4342
A. Puglisi et al. / Tetrahedron Letters 50 (2009) 4340–4342
NHBoc
Supplementary data
cat 1/H+ (10% mol)
Ph
NO2
COOEt
COOEt
+
Ph
N
Supplementary data associated with this article can be found, in
DCM, 18 h, 0°C
Boc
O2N
Yield: 60%, ee: 72%
References and notes
Scheme 3. Addition of 2-nitrobutanoate to N-Boc imine.
1. Review: Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: Berlin, 1999; Vols. I–IV,.
2. For a review on quaternary stereocenters see: Steven, A.; Overman, L. A. Angew.
Chem., Int. Ed. 2007, 46, 5488–5508 and references cited there.
3. Review: Viso, A.; de la Pradilla, R. F.; Garcia, A.; Flores, A. Chem. Rev. 2005, 105,
3167–3189.
4. Review on organocatalytic asymmetric Mannich reactions: Ting, A.; Schaus, S.
E. Eur. J. Org. Chem. 2007, 5797–5801.
5. For Mannich-type reactions of glycine Schiff base see: Shibuguchi, T.; Mihara,
H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794–807
and references cited there.
6. Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418–
3419; Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129,
3466–3467.
7. Knudsen, K. R.; Jorgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362–1365.
8. Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130,
2170–2171.
9. Uraguchi, D.; Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 10878–10879.
10. Singh, A.; Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866–5867.
11. Han, B.; Liu, Q.-P.; Li, R.; Tian, X.; Xiong, X.-F.; Deng, J.-G.; Chen, Y.-C. Chem. Eur.
J. 2008, 14, 8094–8097.
S
N
N
H
O
N
H
+
N
H
O
2.189A
2.159A
2.236A
O
H
O
t
O -Bu
N
O
N
EtO
Ph
12. Puglisi, A.; Benaglia, M.; Annunziata, R.; Rossi, D. Tetrahedron: Asymmetry 2008,
19, 2258–2264.
13. Enantiomeric excess of syn diastereoisomer was lower than 50% under any
reaction conditions.
14. The use of different protic acids (trifluoroacetic acid, trifluoromethane sulfonic
acid, and methane sulfonic acid) resulted in high enantiomeric excess but low
reproducibility. According to a referee’s suggestion the reaction promoted by
the pivalate salt of catalyst 1 was studied, in order to explore the use of a more
basic carboxylate anion; by running the reaction in DCM at 0 °C for 18 h, the
product was obtained in 71% yield, 55/45 dr and 57% ee for the major
diastereoisomer.
Figure 2. Minimum energy complex between 1/H+ and reactants. Non-acidic
hydrogens are removed for sake of clarity. Distances between hydrogen-bonded
atoms are reported.
thioureic NH hydrogens) and enolic OH (with the amidic C@O). The
insertion of the imine slightly modifies this pattern: the nitroeno-
late is still hydrogen-bounded to the two NH of the thiourea, while
N-Boc benzaldehyde imine is held in place via an hydrogen bond
between the amidic C@O and the protonated amine of the ligand.17
All the possible four complexes were fully optimized and charac-
terized as minima,18 the structure of the lowest energy one—lead-
ing to the major, (S,S) diastereoisomer—is shown in Figure 2. The
calculated ee (88% at 0 °C) is in nice agreement with the experi-
mental results.
We believe that the extremely simple catalyst synthesis, as well
as the possibility of a modular approach for developing new and
more efficient metal-free promoters for a relatively unexplored
field like the nitroester reactions makes the present methodology
very attractive.19
15. It must be noted that Boc residue maybe the easier protecting group to
remove; for synthetic transformations of
a
-nitro, b-amino ester see Refs.6,10,11
16. Attempts at improving the diastereoselectivity of the reaction, for example, by
using bulkier esters (see Ref. 10) gave no satisfactory results.
17. The coordination of t-butyloxy carbonyl of imine to the thiourea and of the
nitro ester to the RMe2NH+ group of diaminocyclohexane is also possible;
however, from our preliminary calculations such arrangement does not allow
to establish a favorite mode of reaction of the two reagents.
18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, V.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, A.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
GAUSSIAN 03, Revision D.01; Gaussian: Wallingford, CT, 2004.
Acknowledgment
This work was supported by MIUR (Rome) within the national
project ‘Nuovi metodi catalitici stereoselettivi e sintesi stereoselet-
tiva di molecole funzionali’.
19. For a recent contribution in the use of chiral Bronsted acids see: Wilt, J. C.; Pink,
M.; Johnston, J. N. Chem. Commun 2008, 4177–4179.