C O M M U N I C A T I O N S
Scheme 3. Proposed Mechanistic Pathway
Table 2. Scope of the BPA-Catalyzed Cyclization Cascade
time
(h)
Yield ee
(%)a (%)b
entry
R1
R2
n
1
R3
2
6
5
c
methyl
n-propyl
n-hexyl
n-dodecyl
phenyl
methyl
phenyl
methyl
n-propyl
n-hexyl
phenyl
phenyl
phenyl
methyl
n-hexyl
phenyl
methyl
methyl
methyl
n-pentyl
methyl
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
a
b
c
d
e
a
e
a
b
c
e
e
e
a
c
e
f
H
H
H
H
a
a
a
a
a
b
b
c
c
c
c
d
e
f
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
g
d
f
2
24
12
12
36
26
36
12
12
24
44
24
24
24
12
41
96
130
82
178
106
a
99
87
70
74
78
81
66
99
70
66
65
73
64
92
63
95
82
74
95
90
95
84
84
83
83
87
92
94
86
89
88
90
90
89
92
95
99
85
75
85
91
72
1
2
3
4
5
6
7
8
9
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
c
H
4-Br
4-Br
5-Br
5-Br
5-Br
5-Br
5-F
6-F
7-Me
7-Me
7-Me
7-Me
H
Acknowledgment. We acknowledge funding from EPSRC (Lead-
ership Fellowship to D.J.D.), Syngenta (A.W.P.), Pfizer Global
Research and Development (M.E.M.), and UCB (C.A.H.).
c
10
11
12
13
14
15
16
17
18
19
20
21
Supporting Information Available: Experimental procedures, spec-
tral data for 1, 2, 3a, 5, 7, and 10, and a CIF file. This material is available
f
f
f
a
a
a
f
References
d e
,
CO2Me
g
h
i
d e
,
(1) For reviews, see: (a) Maryanoff, B. E.; Zhang, H. C.; Cohen, J. H.; Turchi,
I. J.; Maryanoff, C. A. Chem. ReV. 2004, 104, 1431. (b) Speckamp, W. N.;
Moolenaar, M. J. Tetrahedron 2000, 56, 3817. (c) Speckamp, W. N.;
Hiemstra, H. Tetrahedron 1985, 41, 4367.
P(O)(OMe)2
P(O)(OMe)2
SO2Ph
H
H
7-Me
d e
,
f
f
t
u
c d e
,
,
j
(2) For selected reviews, see: (a) Enders, D.; Grondal, C.; Hu¨ttl, M. R. M.
Angew. Chem., Int. Ed. 2007, 46, 1570. (b) Nicolaou, K. C.; Edmonds,
D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (c) Tietze,
L. F. Chem. ReV. 1996, 96, 115.
a Isolated yields. b Determined by CSP HPLC analysis. c See the SI
for proof of stereochemistry. d Using 20 mol
%
catalyst. e One
diastereomer was observed in the 1H NMR spectrum of the crude
reaction material.
(3) (a) Yang, T.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2007, 129,
12070. Also see: (b) Yang, T.; Ferrali, A.; Campbell, L.; Dixon, D. J. Chem.
Commun. 2008, 2923.
the reaction mixture, and high levels of enantioselectivity were achieved
using either catalyst 6d or 6f (entries 18-21).
(4) For pioneering studies on chiral phosphoric acid catalysis, see: (a) Akiyama,
T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
(b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(5) For recent reviews on asymmetric organocatalysis by H-bond donors and
Brønsted acids, see: (a) Akiyama, T. Chem. ReV. 2007, 107, 5744. (b) Doyle,
A.; Jacobsen, E. N. Chem. ReV. 2007, 107, 5713. (c) Akiyama, T.; Itoh, J.;
Fuchibe, K. AdV. Synth. Catal. 2006, 348, 999.
(6) For selected examples illustrating the high levels of enantioselectivity using
chiral Brønsted acid organocatalysis, see: (a) Storer, R. I.; Carrera, D. E.;
Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84. (b) Martin,
N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976. (c) Itoh,
J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008, 47, 4016. (d)
Terada, M.; Soga, K.; Momiyama, N. Angew. Chem., Int. Ed. 2008, 47,
4122. (e) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. AdV. Synth.
Catal. 2008, 350, 1001. (f) Kang, Q.; Zheng, X.-J.; You, S.-L. Chem.sEur.
J. 2008, 14, 3539. (g) Rowland, G. B.; Rowland, E. B.; Liang, Y.; Perman,
J. A.; Antilla, J. C. Org. Lett. 2007, 9, 2609.
(7) For examples of the related asymmetric Pictet-Spengler reaction under
chiral Brønsted acid catalysis, see: (a) Seayad, J.; Seayad, A. M.; List, B.
J. Am. Chem. Soc. 2006, 128, 1086. (b) Mergott, D. J.; Zuend, S. J.;
Jacobsen, E. N. Org. Lett. 2008, 10, 745. (c) Wanner, M. J.; van der Haas,
R. N. S.; de Cuba, K. R.; van Maarseveen, J. H.; Hiemstra, H. Angew.
Chem., Int. Ed. 2007, 46, 7485. (d) Sewgobind, N. V.; Wanner, M. J.;
Ingemann, S.; de Gelder, R.; van Maarseveen, J. H.; Hiemstra, H. J. Org.
Chem. 2008, 73, 6405. For a thiourea-catalyzed example, see: (e) Klausen,
R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887.
(8) For examples of N-acyliminium cyclizations using chiral thiourea catalysts,
see: (a) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2007, 129, 13404. (b) Raheem, I. T.; Thiara, P. S.; Jacobsen,
E. N. Org. Lett. 2008, 10, 1577.
The high levels of diastereo- and enantiocontrol with doubly
substituted enol lactone substrates 1g-j were notable and worthy of
further investigation. With short reaction times, both ketoamide 3r and
the dehydrated prochiral enamide 7 could be isolated in significant
quantities (see the SI). Identification of 7 as a key intermediate in the
mechanistic pathway means that the high diastereo- and enantiocontrol
observed in the reaction is consistent with fast, reversible formation
of the diastereomeric N-acyliminium salts 8 and 9 followed by rate-
determining ring closure (Scheme 3), where k1 for production of (+)-
5r is greater than k2 for the production of (-)-5r because of matched
substrate11 and catalyst control.
Pleasingly, this enantioselective cascade was compatible with an
in situ enol lactone-forming gold(I)-catalyzed cycloisomerization of
alkynoic acids 10 (Table 3).3a,12 Thus, when alkynoic acids 10b-d
were treated with gold(I) triflate triphenylphosphine (0.5 mol %) and
then tryptamines 2a, 2c, and 2f in the presence (R)-TPS-BPA 6d (10
mol %), the multicatalyst cascade products were isolated in good yields
and with high ee’s.13
Work to expand and apply these findings is ongoing, and the results
will be reported in due course.
(9) For examples of chiral counterion-mediated asymmetric catalysis, see: (a)
Garc´ıa-Garc´ıa, P.; Lay, F.; Garc´ıa-Garc´ıa, P.; Rabalakos, C.; List, B. Angew.
Chem., Int. Ed. 2009, 48, 4363. (b) Hamilton, G. L.; Kang, E. J.; Mba, M.;
Toste, F. D. Science 2007, 317, 496. (c) Mukherjee, S.; List, B. J. Am.
Chem. Soc. 2007, 129, 11336. (d) Rueping, M.; Antonchick, A. P.;
Brickmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903.
Table 3. Au(I) and Chiral Brønsted Acid Multicatalyst Cascade
(10) For discussions of dynamic kinetic asymmetric transformations, see: (a)
Steinreiber, J.; Faber, K.; Griengl, H. Chem.sEur. J. 2008, 14, 8060. See
also: (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 3543.
(11) The same diastereoisomer is the sole reaction product using PTSA (cat).
(12) For selected examples of tandem (or dual) metal/organocatalysis, see: (a)
Chercheja, S.; Rothenbu¨cher, R.; Eilbracht, P. AdV. Synth. Catal. 2009,
351, 339. (b) Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-H. J. Am. Chem.
Soc. 2009, 131, 9182. (c) Terada, M.; Toda, Y. J. Am. Chem. Soc. 2009,
131, 6954. (d) Hu, W.; Xu, X.; Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.;
Yang, L.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 7782. (e) Sorimashi,
K.; Terada, M. J. Am. Chem. Soc. 2008, 130, 14452. (f) Ref 9d. (g) Ref
9c. (h) Komanduri, V.; Krische, M. P. J. Am. Chem. Soc. 2006, 128, 16448.
(13) A repeat of the reaction between 2a and 10d with AgOTf (0.5 mol %) and
6d (10 mol %) but no added AuClPPh3 gave 5d in 11% yield and 75% ee.
entry
R3
2
R1
10
5
yield (%)a
ee (%)b
1
2
3
4
5
6
7
8
9
H
H
H
5-Br
5-Br
5-Br
7-Me
7-Me
7-Me
a
a
a
c
c
c
f
n-propyl
n-hexyl
n-dodecyl
n-propyl
n-hexyl
n-dodecyl
n-propyl
n-hexyl
b
c
d
b
c
b
c
d
i
79
92
87
77
77
82
96
84
81
84
83
83
89
88
89
95
95
95
j
d
b
c
v
w
o
x
f
f
n-dodecyl
d
a Isolated yields. b Determined by CSP HPLC analysis.
JA9024885
9
J. AM. CHEM. SOC. VOL. 131, NO. 31, 2009 10797