C O M M U N I C A T I O N S
Table 1. Thermodynamic Data for the Unfolding of Collagen
Triple Helices
are the other two amino acids containing a hydroxyl group, Ser
and Thr,21 and host-guest studies indicate that Ser and Thr are
not especially beneficial to collagen stability.22 Thus, we believe
that O-methylation could be a simple means to stabilize natural
collagen and, thereby, enhance its utility as a biomaterial.23
circular
dichroism
DSC
T
m, watera
C)
T
m, EG(aq)b
C)
∆
H
T
∆
S
∆G
peptide
sequence
(
°
(
°
(kcal/mol) (kcal/mol) (kcal/mol)
Acknowledgment. We are grateful to M. D. Shoulders and D.
R. McCaslin for contributive discussions. This work was supported
by Grant AR044276 (NIH) and Instrumentation Grants BIR-
9512577 (NSF) and RR13790 (NIH). F.W.K. was supported by
Postdoctoral Fellowship AR050881 (NIH).
1
2
3
(ProHypGly)10
(ProMopGly)10
(ProFlpGly)10
62.0
70.1
91d
77.1
89.1
ND
-35.2c -33.2c -2.0c
-27.9 -25.2
-2.7
-20.5c -17.2c -3.3c
a
b
c
50 mM HOAc (pH 3.0). 2:1 EG/50 mM HOAc (pH 3.0). Values
d
from ref 17. Value from ref 4a. ND ) Not determined.
Supporting Information Available: Procedures and additional data
for syntheses and analyses reported herein. Full citation for ref 15. This
References
(1) For a review, see: Raines, R. T. Protein Sci. 2006, 15, 1219-1225.
(2) (a) Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M. Science 1994, 266,
75-81. (b) Bella, J.; Brodsky, B.; Berman, H. M. Structure 1995, 3, 893-
906. (c) Miles, C. A.; Burjanadze, T. V. Biophys. J. 2001, 80, 1480-
1486.
(3) It is noteworthy that the frequency of Hyp could be too low to support
such a water network in natural collagen. In the strands of human type-I
collagen, an Xaa-Hyp-Gly sequence occurs in no more than four
consecutive triads and occurs in four consecutive triads only twice over
>1000 residues.
(4) (a) Holmgren, S. K.; Taylor, K. M.; Bretscher, L. E.; Raines, R. T. Nature
1998, 392, 666-667. (b) Holmgren, S. K.; Bretscher, L. E.; Taylor, K.
M.; Raines, R. T. Chem. Biol. 1999, 6, 63-70. (c) DeRider, M.L.; Wilkens,
S. J.; Waddell, M. J.; Bretscher, L. E.; Weinhold, F.; Raines, R. T.;
Markley, J. L. J. Am. Chem. Soc. 2002, 124, 2497-2505.
(5) Shoulders, M. D.; Guzei, I. A.; Raines, R. T. Biopolymers 2008, 89
(DOI: 10.102/bip.20864).
(6) Periskov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. J. Am.
Chem. Soc. 2003, 125, 11500-11501.
(7) Malkar, N. B.; Lauer-Fields, J. L.; Borgia, J. A.; Fields, G. B. Biochemistry
2002, 41, 6054-6064.
Figure 2. (A) Molecular drawing of crystalline Ac-Mop-OMe (50%
probability ellipsoids). (B) Conformation of crystalline Ac-Mop-OMe and
Ac-Hyp-OMe showing the putative n f π* interaction.
Table 2. Values of φ, ψ, ω, and Kt/c for Ac-Mop-OMe and
Analogues
(8) Hine, J.; Mookerjee, P. K. J. Org. Chem. 1975, 40, 292-298.
(9) For OH, the estimated atomic solvation parameters are -0.066 kcal/mol/
Å2 for H (donor) and -0.045 kcal/mol/Å2 for O (acceptor). Petukhov,
M.; Rychkov, G.; Firsov, L.; Serrano, L. Protein Sci. 2004, 13, 2120-
2129. The hydrogen-bond donor capability is eliminated upon methylation.
(10) Zielenkiewicz, A.; Wszelaka-Rylik, M.; Poznaski, J.; Zielenkiewicz, W.
J. Solution Chem. 1998, 27, 235-243.
b
parameter
Ac-Mop-OMe
Ac-Hyp-OMea
Ac-Flp-OMea
13
φ (deg)
ψ (deg)
ω (deg)
Kt/c
-58.1 ( 0.1
147.7 ( 0.1
-179.7 ( 0.1
6.7 ( 0.3c
-57.0
150.8
-178.8
6.1
-55.0
140.5
-178.9
6.7
-59.6
149.8
178.5
∞
(11) Dyck, M.; Kru¨ger, P.; Lo¨sche, M. Phys. Chem. Chem. Phys. 2005, 7,
150-156.
a
Mean values of φ, ψ, and ω from two molecules in ref 18; values of
t/c from ref 19. b Mean values for Hyp in 13.2a c Determined in 94:6 D2O/
(12) Calculated σ-bond inductive effects using the bicyclo[2.2.2]octane system
are σI ) 0.26 for OH and 0.22 for OCH3. See: Janesko, B. G.; Gallek, C.
J.; Yaron, D. J. Phys. Chem. 2003, 107, 1655-1663.
K
CD3OD by 13C NMR spectroscopy using [13CH3]Ac-Mop-OMe.
(13) Average σC-H f σC-X hyperconjugative interactions are 8.47 kcal/mol
for X ) OH and 8.86 kcal/mol for X ) OCH3. See: Alabugin, I. A.;
Zeidan, T. A. J. Am. Chem. Soc. 2002, 124, 3175-3185.
(14) Jenkins, C. L.; McCloskey, A. I.; Guzei, I. A.; Eberhardt, E. S.; Raines,
R. T. Biopolymers 2005, 80, 1-5.
(Figure 2A). The pyrrolidine ring of Mop adopts a Cγ-exo ring
pucker, which likely derives from a gauche effect between Ni and
Oδ1 4c,18,19 In addition, the conformation of Ac-Mop-OMe appears
(15) Boc-Mop-OH was prepared from Boc-Hyp-OH following the procedure
described in Krapcho, J. et al. J. Med. Chem. 1988, 31, 1148-1160.
(16) Feng, Y.; Melacini, G.; Taulane, J. P.; Goodman, M. J. Am. Chem. Soc.
1996, 118, 10351-10358.
.
i
to rely on another stereoelectronic effect; the Oi-1‚‚‚C′idOi distance
of 2.84 Å and Oi-1‚‚‚C′idOi angle of 94.6° are indicative of a
favorable n f π* interaction (Figure 2B).4c,20 This stereoelectronic
effect would stabilize the trans (Z) isomer of the amide bond in
Ac-Mop-OMe. Indeed, Ac-Mop-OMe has a trans/cis ratio of Kt/c
) 6.7 (Table 2), which is among the largest reported in a derivative
of Ac-Pro-OMe.1 Thus, these two stereoelectronic effects appear
to preorganize the main-chain dihedral angles of Ac-Mop-OMe (as
well as Ac-Hyp-OMe and Ac-Flp-OMe) close to those in 13 (Table
2).
The conformational stability conferred upon the collagen triple
helix by O-methylation provides strong evidence that the hydroxyl
group of Hyp acts primarily through stereoelectronic effects and
that its hydration provides little (if any) benefit. This finding could
have practical consequences. Replacing a hydroxyl group in a
protein with a fluoro group while retaining the stereochemical
configuration (as in Hyp f Flp) is not possible with extant reagents.
In contrast, O-methylation is a readily achievable transformation.
Moreover, Hyp is much more abundant in human collagens than
(17) Nishi, Y.; Uchiyama, S.; Doi, M.; Nishiuchi, Y.; Nakazawa, T.; Ohkuba,
T.; Kobayashi, Y. Biochemistry 2005, 44, 6034-6042.
(18) Panasik, N., Jr.; Eberhardt, E. S.; Edison, A. S.; Powell, D. R.; Raines,
R. T. Int. J. Peptide Protein Res. 1994, 44, 262-269.
(19) Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines,
R. T. J. Am. Chem. Soc. 2001, 123, 777-778.
(20) (a) Hinderaker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188-1194.
(b) Horng, J.-C.; Raines, R. T. Protein Sci. 2006, 15, 74-83. (c) Hodges,
J. A.; Raines, R. T. Org. Lett. 2006, 8, 4695-4697. (d) Haduthambi, D.;
Zondlo, N. J. J. Am. Chem. Soc. 2006, 128, 12430-12431. (e) Ku¨min,
M.; Sonntag, L. S.; Wennemers, H. J. Am. Chem. Soc. 2007, 129, 466-
467. (f) Gorske, B. C.; Bastian, B. L.; Geske, G. D.; Blackwell, H. E. J.
Am. Chem. Soc. 2007, 129, 8928-8929.
(21) Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B. J. Struct. Biol. 1998, 122,
86-91.
(22) For example, Ser and Thr provide less stability than do Ile, Met, or Val
in the Xaa or Yaa position of a triple helix. Persikov, A. V.; Ramshaw,
J. A. M.; Kirkpatrick, A.; Brodsky, B. Biochemistry 2000, 39, 14960-
14967.
(23) (a) Werkmeister, J. A., Ramshaw, J. A. M., Eds.; Collagen Biomaterials;
Elsevier Science: Barking, Essex, U.K., 1992. (b) Ramshaw, J. A. M.;
Werkmeister, J. A.; Glattauer, V. Biotechnol. Genet. Eng. ReV. 1995, 13,
335-382.
JA800225K
9
J. AM. CHEM. SOC. VOL. 130, NO. 10, 2008 2953