Inorg. Chem. 2009, 48, 7639–7644 7639
DOI: 10.1021/ic900296y
Kinetic and Mechanistic Studies of Geometrical Isomerism in Neutral Square-
Planar Methylpalladium Complexes Bearing Unsymmetrical Bidentate Ligands of
r-Aminoaldimines
Feng-Zhao Yang, Yu-Heng Wang, Mu-Chieh Chang, Kuo-Hsuan Yu, Shou-Ling Huang, Yi-Hung Liu, Yu Wang,
Shiuh-Tzung Liu, and Jwu-Ting Chen*
Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
Received February 13, 2009
A series of hemilabile ligands of R-aminoaldimines and their methylpalladium complexes have been prepared and
characterized. Neutral square-planar methylpalladium complexes in the form of [R1R2NCMe2CHdNR]Pd(Me)Cl
(R=Me, R1=R2=Me (3a); R=Me, R1=R2=Et (3b); R=Et, R1=R2=Me (4a); R=nPr, R1=R2=Me (5a); R=iPr, R1=R2=Me (6a);
R=iPr, R1=R2=Et (6b); R=iPr, (R1, R2)=c-C4H8 (6c); R=iPr, R1=iPr, R2=H (6d); R=iPr, R1=tBu, R2=H (6e); R=tBu, R1=R2=
Me (7a); R=tBu, R1=R2=Et (7b); R=tBu, (R1, R2)=c-C4H8 (7c); R=tBu, R1=iPr, R2=H (7d); R=tBu, R1=tBu, R2=H (7e); R=
Ph, R1=R2=Me (8a); R=Ph, R1=R2=Et (8b)) show geometrical isomerism. The relative ratios of trans/cis isomers
appear to be predominated by the steric hindrance between the Pd-bound methyl group and imino or amino
substituents (R and R1 and R2). The NMR studies for the substitution reaction of (COD)Pd(Me)Cl with
Et2NCMe2CHdNiPr at -20 °C indicate that cis-6b is the major kinetic product, which isomerizes to the
thermodynamic product in trans form quantitatively above -5 °C. Kinetic results show that the ligand substitution
reaction likely undergoes an associative pathway, and the isomerization reaction proceeds via an intramolecular
process that comprises imine dissociation and recoordination.
Introduction
hybrid functionalities of amine and imine that possess nitro-
gen donors with sp2 and sp3 configuration, respectively. We
previously found that these two functionalities appear to
provide comparable trans influence. On the other hand, the
amine and imine of R-amino-aldimines can have substituents
with different numbers and varieties and thus can afford
distinct steric influence on their vicinal ligands.4
In the cases of square-planar [Et2NCMe2CHdNR]Pd-
(Me)Cl (R=iPr (6b), Ph (8b)), the trans configuration that
is defined according to the orientation of heavier donor
Square-planar coordination compounds with unsymme-
trical bidentate ligands may carry the character of geome-
trical isomerism.1 This property is worthy of investigation,
because the structural differentiation in such isomerism
potentially may convey distinct chemical reactivity.2 The
derivatives of R-amino-aldimines in the form of R1R2N-
CMe2CHdNR have been found to serve as hemilabile
bidentate ligands of non-C2 symmetry.3 These ligands bear
*To whom correspondence should be addressed. Tel.: 8862-3366-1659.
Fax: 8862-2363-6359. E-mail: jtchen@ntu.edu.tw.
(2) (a) van Leeuwen, P. W. N. M.; Roobeek, C. F.; van der Heijden, H. J.
Am. Chem. Soc. 1994, 116, 12117–12118. (b) Hamilton, D. H.; Shapley, J. R.
Organometallics 1998, 17, 3087–3090. (c) Ding, Y.; Fanwick, P. E.; Walton, R.
A. Inorg. Chem. 1999, 38, 5165–5170. (d) Clarkson, A. J.; Blackman, A. G.;
Clark, C. R. J. Chem. Soc., Dalton Trans. 2001, 758–765. (e) Vicente, J.; Abad,
(1) (a) Rulke, R. E.; Delis, J. G. P.; Groot, A. M.; Elsevier, C. J.; van
Leeuwen, P. W. N. M.; Vrieze, K.; Goubitz, K.; Schenk, H. J. Organomet.
Chem. 1996, 508, 109–120. (b) Nozaki, K.; Sato, N.; Tonomura, Y.; Yasutomi,
M.; Takaya, H.; Hiyama, T.; Matsubara, T.; Koga, N. J. Am. Chem. Soc. 1997,
119, 12779–12795. (c) Bastero, A.; Claver, C.; Ruiz, A; Castillon, S.; Daura, E.;
Bo, C.; Zangrando, E. Chem.;Eur. J. 2004, 10, 3747–3760. (d) Soro, B.;
Stoccoro, S.; Cinellu, M. A.; Minghetti, G.; Zucca, A.; Bastero, A.; Claver, C. J.
Organomet. Chem. 2004, 689, 1521–1529. (e) Owen, G. R.; Burkill, H. A.; Vilar,
R.; White, A. J. P.; Williams, D. J. J. Organomet. Chem. 2005, 690, 5113–5124.
(f) Centore, R.; Roviello, G.; Tuzi, A. Inorg. Chim. Acta 2005, 358, 2112–2116.
(g) Amenta, D. S.; Sparks, S. N.; Giljea, J. W.; Edelmann, F. T.; Fischer, A.;
Blaurock, S. Z. Anorg. Allg. Chem. 2005, 631, 2854–2857. (h) Durand, J.;
Zangrando, E.; Stener, M.; Fronzoni, G.; Carfagna, C.; Binotti, B; Kamer, P. C. J.;
Muller, C.; Caporali, M.; van Leeuwen, P. W. N. M.; Vigt, D.; Milani, B. Chem.;
Eur. J. 2006, 12, 7639–7651. (i) Braunstein, P. Chem. Rev. 2006, 106, 134–159.
(j) Vuzman, D.; Poverenov, E.; Shimon, L. J. W.; Diskin-Posner, Y.; Milstein, D.
Organometallics 2008, 27, 2627–2634.
J.-A.; Martínez-Viviente, E. Organometallics 2002, 21, 4454–4467. (f) Vicente,
::
ꢀ
ꢀ
J.; Abad, J.-A.; Fortsch, W.; Lopez-Saez, M.-J. Organometallics 2004, 23, 4414–
4429. (g) Madej, E.; Katafias, A.; Kita, P.; Eriksen, J.; Mønsted, O. Eur. J. Inorg.
Chem. 2006, 5098–5105. (h) Huynh, H. V.; Ho, J. H. H.; Neo, T. C.; Koh, L. L. J.
Organomet. Chem. 2005, 690, 3854–3860. (i) Carfagna, C.; Gatti, G.; Mosca, L.;
Paoli, P.; Guerri, A. Helv. Chim. Acta 2006, 89, 1660–1671. (j) Leone, A.;
Gischig, S.; Elsevier, C. J.; Consiglio, G. J. Organomet. Chem. 2007, 692, 2056–
2063. (k) Casares, J. A.; Espinet, P.; Martinez-llarduya, J. M.; Mucientes, J. J.;
Salas, G. Inorg. Chem. 2007, 46, 1027–1032.
(3) Lee, J.-J.; Yang, F.-Z.; Lin, Y.-F.; Chang, Y.-C.; Yu, K.-H.; Chang,
M.-C.; Lee, G.-H.; Liu, Y.-H.; Wang, Y.; Liu, S.-T.; Chen, J.-T. Dalton
Trans. 2008, 5945–5956.
(4) Yang, F.-Z.; Chen, Y.-C.; Lin, Y.-F.; Yu, K.-H.; Liu, Y.-H.; Wang,
Y.; Liu, S.-T.; Chen, J.-T. Dalton Trans. 2009, 1243–1250.
r
2009 American Chemical Society
Published on Web 07/15/2009
pubs.acs.org/IC