A. Schaate et al. / Inorganica Chimica Acta 362 (2009) 3600–3606
3605
mers with interesting properties (e.g., photoluminescence). Most
likely due to the presence of the long hydrophobic hexyl substitu-
ents at the central benzene rings the dimensionality of the coordi-
nation compounds 1 and 2 is limited to chains. The construction of
porous coordination polymers with three-dimensional frameworks
likely requires the introduction of OPE polycarboxylates with
shorter alkyl substituents. Such work is currently underway in
our laboratories.
Acknowledgements
The authors thank Birgit Beisse and Falk Heinroth for perform-
ing TG/DTA measurements and the reviewers for valuable
comments.
Appendix A. Supplementary material
CCDC 677224 and 677225 contain the supplementary crystallo-
graphic data for compounds 1 and 2. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
Fig. 6. Photoluminescence emission spectra for 1 (blue solid line), 1-DMF (blue
dotted line), 2 (red solid line), 2-DEF (red dotted line), (HO2C[PEP(hexyl)2EP]CO2H)
(black solid line) and [K(O2C[PEP(hexyl)2EP]CO2)K} (black dotted line) recorded
upon excitation at 310 nm.
Supplementary data associated with this article can be found, in
In the IR spectra of 1-DMF and 2-DEF stretching vibrations of
References
carboxylate groups are seen with mas (1-DMF) at 1532 cmÀ1
, mas
(2-DEF) at 1528 cmÀ1
at 1412 cmÀ1. The
are significantly smaller than that of {K2(O2C[PEP(hexyl)2EP]CO2)}
= 144 cm-1) and thus suggest that the carboxylate groups in 1-
,
msy (1-DMF) at 1401 cmÀ1 and msy (2-DEF)
[1] (a) C. Janiak, Dalton Trans. (2003) 2781;
values of 131 and 116 cmÀ1, respectively,
(b) S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem., Int. Ed. Engl. 43 (2004)
2334;
(c) D. Bradshaw, J.B. Claridge, E.J. Cussen, T.J. Prior, M.J. Rosseinsky, Acc. Chem.
Res. 38 (2005) 273;
D
(D
(d) D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 36 (2007) 770;
(e) S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 252 (2007) 2490.
[2] (a) M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M.
Yaghi, Acc. Chem. Res. 34 (2001) 319;
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature
423 (2003) 705.
[3] (a) E.Y. Lee, S.Y. Jang, M.P. Suh, J. Am. Chem. Soc. 127 (2005) 6374;
(b) Y.-Q. Huang, B. Ding, H.-B. Song, B. Zhao, P. Ren, P. Cheng, H.-G. Wang, D.-Z.
Liao, S.-P. Yan, Chem. Commun. (2006) 4906;
(c) C.A. Bauer, T.V. Timofeeva, T.B. Settersten, B.D. Patterson, V.H. Liu, B.A.
Simmons, M.D. Allendorf, J. Am. Chem. Soc. 129 (2007) 7136.
[4] F.X. Llabrés i Xamena, A. Corma, H. Garcia, J. Phys. Chem. C111 (2007) 80.
[5] (a) Q.-R. Fang, G.-S. Zhu, J. Jin, M. Xue, X. Wei, D.-J. Wang, S.-L. Qiu, Angew.
Chem., Int. Ed. Engl. 45 (2006) 6126;
DMF and 2-DEF coordinate in a bidentate-chelating mode to the
Zn centres [18], as one would indeed expect after loss of the coor-
dinating formamide molecules. Since the coordination chains are
not linear, the remaining two chelating carboxylate groups can
only give rise to a rather distorted tetrahedral geometry around a
Zn cation. Complete removal of the formamide molecules is con-
firmed by the absence of the characteristic mas(CO) vibrations. In-
stead, the presence of some water molecules, possibly sitting
within the channels, is indicated for both 1-DMF and 2-DEF by
the broad bands being centered near 3450 cm-1
(m(OH)) and the
sharp bands at 1692 cmÀ1 (d(H2O)).
(b) Q.-R. Fang, G.-S. Zhu, M. Xue, Q.-L. Zhang, J.-Y. Sun, X.-D. Guo, S.-L. Qiu, S.-T.
Xu, P. Wang, D.-J. Wang, Y. Wei, Chem. – Eur. J. 12 (2006) 3754;
(c) Q.-R. Fang, G.-S. Zhu, Z. Jin, M. Xue, X. Wei, D.-J. Wang, S.-L. Qiu, Cryst.
Growth Des. 7 (2007) 1035.
3.4. Photoluminescence spectra
[6] S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.-P. Lillerud,
M. Bjorgen, A. Zecchina, Chem. Commun. (2004) 2300.
[7] M. Alvaro, E. Carbonell, B. Ferrer, F.X. Llabrés i Xamena, H. Garcia, Chem. Eur. J.
13 (2007) 5106.
[8] (a) S.W. Thomas III, G.D. Joly, T.M. Swager, Chem. Rev. 107 (2007) 1339;
(b) U.H.F. Bunz, Chem. Rev. 100 (2000) 1605;
Powder samples of 1, 2, 1-DMF and 2-DEF show a blue photo-
luminescence upon excitation at 310 nm. The luminescence emis-
sion spectra of these compounds are displayed in Fig. 6, along with
that of solid HO2C[PEP(hexyl)2EP]CO2H and its potassium salt.
Whereas 1-DMF, 2-DEF, the acid and the potassium salt all exhibit
a broad structureless emission band with kmax varying between
403 nm (potassium salt) and 459 nm (2-DEF), a shoulder is clearly
seen in the emission band of both 1 and 2 which is blue-shifted by
ca. 16 nm with respect to kmax at 433 and 428 nm, respectively. The
emission maxima of 1-DMF and 2-DEF are red-shifted by ca. 25 nm
with respect to kmax of the corresponding parent compounds. The
differences in the emission maxima, broadness and fine structure
may be due to differences in intermolecular interactions
[3c,19,20], differences in rotational isomers in the ground and ex-
cited state [19,21] as well as a contribution from a charge-transfer
transition [22].
(c) J.M. Tour, Acc. Chem. Res. 33 (2000) 791;
(d) L. Fenenko, G. Shao, A. Orita, M. Yahiro, J. Otera, S. Svechnikov, C. Adachi,
Chem. Commun. (2007) 2278;
(e) M.P. Eng, T. Ljungdahl, J. Mårtensson, B. Albinsson, J. Phys. Chem. B110
(2006) 6483;
(f) J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104 (2004)
4971;
(g) G. Voskerician, C. Weder, Adv. Polym. Sci. 177 (2005) 209.
[9] (a) O. Taratula, J. Rochford, P. Piotrowiak, E. Galoppini, J. Phys. Chem. B110
(2006) 15734;
(b) M. Myahkostupov, P. Piotrowiak, D. Wang, E. Galoppini, J. Phys. Chem. C111
(2007) 2827;
(c) E. Galoppini, Coord. Chem. Rev. 248 (2004) 1283;
(d) K. Kilså, E.I. Mayo, D. Kuciauskas, R. Villahermosa, N.S. Lewis, J.R. Winkler,
H.B. Gray, J. Phys. Chem. A107 (2003) 3379.
[10] (a) H. Kukula, S. Veit, A. Godt, Eur. J. Org. Chem. (1999) 277;
(b) U. Ziener, A. Godt, J. Org. Chem. 62 (1997) 6137;
(c) A. Godt, C. Franzen, S. Veit, V. Enkelmann, M. Pannier, G. Jeschke, J. Org.
Chem. 65 (2000) 7575;
4. Conclusion
(d) L. Jones II, J.S. Schumm, J.M. Tour, J. Org. Chem. 62 (1997) 1388;
(e) S. Huang, J.M. Tour, J. Am. Chem. Soc. 121 (1999) 4908;
(f) G. Li, X. Wang, F. Wang, Tetrahedron Lett. 46 (2005) 8971;
(g) J.C. Nelson, J.K. Young, J.S. Moore, J. Org. Chem. 61 (1996) 8160.
Our work demonstrates that OPE polycarboxylates of nanome-
tre length can be used to synthesise crystalline coordination poly-