6240 J. Am. Chem. Soc., Vol. 119, No. 27, 1997
Atarashi et al.
(dd, J ) 2.8, 1.8 Hz, 1H) 3.38 (ddd, J ) 9.2, 2.4, 2.4 Hz, 1H), 4.09 (d,
J ) 8.9 Hz, 1H), 4.18 (d, J ) 9.2 Hz, 1H), 4.57 (d, J ) 12.4 Hz, 1H),
4.74 (d, J ) 12.3 Hz, 1H), 5.22 (d, J ) 7.7 Hz, 1H), 5.89 (d, J ) 9.2
Hz, 1H), 6.04 (d, J ) 7.4 Hz, 1H), 6.72 (m, 2H), 7.13 (t, J ) 7.8 Hz,
1H), 7.16-7.61 (m, 15H), the NH proton was not resolved; 13C NMR
(75.5 MHz, CDCl3) δ 20.7 (q), 30.6 (q), 31.7 (t), 39.6 (d), 45.8 (d),
52.5 (d), 53.9 (s), 57.2 (s), 65.6 (d), 66.0 (t), 66.3 (d), 73.1 (t), 110.2
(d), 120.9 (d), 126.1 (d), 126.5 (d), 126.9 (d), 127.3 (d), 127.4 (d),
127.8 (s), 128.0 (d), 128.2 (d), 128.3 (d), 128.8 (d), 129.6 (d), 138.7
(s), 140.1 (s), 140.3 (s), 141.5 (s), 143.6 (s), 169.3 (s), 176.0 (s), 180.7
(s), two aromatic doublets were not resolved; mass spectrum, m/z (rel
intensity) 638 (M, 14), 578 (9), 470 (16), 193 (51), 91 (100), 43 (25);
Anal. Calcd for C41H38N2O5: C, 77.09; H, 5.99. Found: C, 77.31;
H, 6.05.
2 mL of dimethoxyethane was added 7 mL of 6 N aqueous HCl. The
mixture was warmed at 48 °C for 16 h, cooled to room temperature,
and then made basic with sodium bicarbonate. The mixture was diluted
with 20 mL of water and extracted with six 25-mL portions of EtOAc.
The combined organic layers were dried (MgSO4), filtered, and
concentrated in vacuo. The residue was chromatographed over 5 g of
silica gel (CH2Cl2; then THF-CH2Cl2, 2.5:97.5 f 5:95) to afford 8
mg (14%) of cyclic acetal 103 as a white solid: mp 275-310 °C (dec);
1
IR (film) 3223, 1714 cm-1; H NMR (300 MHz, CDCl3) δ 1.74 (d,
1H), 1.90 (m, 1H), 2.10 (m, 2H), 2.88 (s, 3H), 3.15 (m, 2H), 3.89
(broad s, 1H), 3.97 (d, 1H), 4.46 (d, 1H), 4.49 (s, 2H), 4.96 (d, 1H),
5.45 (broad d, 1H), 6.87 (d, 1H), 7.08 (t, 1H), 7.28 (m, 6H), 7.89 (broad
s, 1H), 8.32 (d, 1H); 13C NMR (75.5 MHz, CDCl3) δ 25.2 (t), 26.9
(q), 28.6 (t), 32.4 (t), 40.5 (d), 51.1 (s), 53.9 (s), 69.6 (d), 69.7 (t), 72.8
(t), 88.2 (d), 96.0 (d), 109.0 (d), 122.4 (d), 127.1 (d), 127.3 (d), 127.9
(d), 128.6 (s), 128.6 (d), 129.7 (d), 138.5 (s), 140.1 (s), 177.1 (s), 177.9
(s); mass spectrum, m/z (rel intensity) 446 (M, 5), 355 (100), 240 (25),
91 (92); exact mass calcd for C26H26N2O5 m/z 446.1841, found m/z
446.1847. Continued elution (THF-CH2Cl2, 7.5:92.5, then 25:75)
afforded 46 mg (65%) of hemiacetal 102 as a mixture of diastereo-
(()-(1′R*,3R*,3′aS*,4′R*,6′R*,7′aS*,8′S*)-3′a-[(Benzyloxy)methyl]-
8′-(1,2-epoxy-2,2-diphenylethyl)-3′a,5′,6′,7′a-tetrahydro-6′-hydroxy-
2′-methylspiro[indoline-3,7′(4′H)-[1,4]methanoisoindoline]-2,3′-di-
one Acetate (Ester) and (()-(1′R*,3S*,3′aR,4′S*,-6′S*,7′aR*,8′S*)-
3′a-[(Benzyloxy)methyl]-3′a,5′,6′,7′a-tetrahydro-6′-hydroxy-2′-methyl-
2,3′-dioxospiro[indoline-3,7′(4′H]methanoisoindoline]-8′-car-
boxaldehyde Acetate (Ester) (101). To a solution of 400 mg (0.626
mmol) of olefin 100 in 15 mL of CH2Cl2-MeOH (4:1) chilled to -78
°C was added 60 mL of a 0.094 M solution of ozone gas, prepared by
passing ozone through 75 mL of CH2Cl2-MeOH (4:1) at a rate of 1.1
mmol/min. The addition of ozone was monitored by thin-layer
chromatography (EtOAc-hexane, 1:1) and stopped once starting
material was no longer evident. The mixture was then purged of ozone
by passing nitrogen gas through the solution, and then 3 mL of dimethyl
sulfide was added. The cold bath was removed, and the mixture was
stirred at room temperature for 18 h and then concentrated in vacuo.
The residue was chromatographed over 15 g of silica gel (first CH2-
Cl2; then EtOAc-CH2Cl2, 1:9) to afford 62 mg (15%) of the epoxide
derived from 100 as a white solid: mp 178-183 °C; IR (neat) 1726
cm-1; 1H NMR (300 MHz, CDCl3) δ 1.52 (s, 3H), 2.02 (dd, J ) 15.7,
3.5 Hz, 1H), 2.17 (t, J ) 1.5 Hz, 1H), 2.29 (broad d, J ) 8.4 Hz, 1H),
2.36 (broad s, 1H), 2.55 (ddd, J ) 15.7, 8.1, 2.1 Hz, 1H), 2.82 (s, 3H),
3.19 (d, J ) 8.5 Hz, 1H), 3.38 (dd, J ) 2.6, 2.0 Hz, 1H), 4.17 (s, 2H),
4.54 (d, J ) 12.3 Hz, 1H), 4.69 (d, J ) 12.3 Hz, 1H), 5.18 (d, J ) 7.7
Hz, 1H), 5.59 (d, J ) 7.7 Hz, 1H), 6.63-6.71 (m, 2H), 7.10 (td, J )
7.7, 0.9 Hz, 1H), 7.16-7.40 (m, 10H), 7.54-7.66 (m, 5H), 7.98 (broad
s, 1H); 13C NMR (75.5 MHz, CDCl3) δ 20.7 (q), 30.0 (q), 32.1 (t),
37.5 (d), 46.7 (d), 52.4 (d), 53.5 (s), 57.1 (s), 62.1 (d), 65.5 (d), 65.7
(t), 66.0 (s), 67.8 (d), 73.1 (t), 109.9 (d), 121.3 (d), 126.1 (d), 126.5
(d), 127.0 (d), 127.5 (d), 127.9 (d), 128.0 (d), 128.1 (s), 128.2 (d),
128.4 (d), 128.5 (d), 128.6 (d), 128.8 (d), 137.1 (s), 138.8 (s), 139.0
(s), 140.9 (s), 169.0 (s), 175.7 (s), 179.9 (s); mass spectrum, m/z (rel
intensity) 654 (M, 0.1), 563 (36), 167 (73), 91 (100); exact mass calcd
for C41H38N2O6 m/z 654.2729, found m/z 654.2768. Continued elution
(EtOAc-CH2Cl2, 2:8 f 3:7 f 1:1 f EtOAc) gave partially purified
aldehyde which was recrystallized from EtOAc-hexane to afford 186
mg (61%) of 101. A second recrystallization from EtOAc-hexane
gave 154 mg (51%) of pure 101 as a white solid: mp 235-241 °C; IR
mers: IR (film) 3252 (broad), 1713 cm-1 13C NMR (mixture of
;
diastereomers, 75.5 MHz, CDCl3) δ 23.1 (t), 23.2 (t), 27.4 (q), 27.5
(q), 29.3 (d), 31.1 (d), 46.7 (d), 48.0 (d), 49.7 (d), 50.0 (d), 53.2 (s),
53.5 (s), 58.6 (s), 59.0 (s), 60.9 (d), 61.9 (d), 65.9 (t), 66.1 (t), 68.3
(d), 70.8 (d), 72.6 (t), 89.7 (d), 91.2 (d), 109.3 (d), 109.7 (d), 121.7
(d), 122.0 (d), 126.8 (d), 126.9 (d), 127.2 (d), 127.8 (d), 128.2 (d),
128.4 (d), 128.6 (d), 130.3 (s), 130.4 (s), 139.0 (s), 140.1 (s), 140.4
(s), 177.6 (s), 177.7 (s), 178.5 (s), 178.7 (s), one aliphatic triplet, three
aromatic doublets and one aromatic singlet were not resolved; mass
spectrum, m/z (rel intensity) 446 (M, 1), 355 (68), 91 (100); exact mass
calcd for C26H26N2O5 m/z 446.1841, found m/z 446.1854. The 1H NMR
spectrum of this material is not reported here due to its complexity.
(()-(3R*,3′R*,4aR*,5S*,8S*,8aS*,9S*)-5-[Benzyloxy)methyl]-
1,3,4,4a,5,7, 8,8a-octahydro-7-methylspiro[3,5,8-ethanylylidene-6H-
pyrano[3,4-c]pyridine-10,3′-indoline]-2′,6-dione (107). To a solution
of 46 mg (0.103 mmol) of hemiacetal 102 in 20 mL of CH2Cl2 was
added 0.5 mL of triethylsilane followed by 0.5 mL of trifluoroacetic
acid. The mixture was stirred for 24 h at reflux, cooled to room
temperature, and then diluted with 25 mL of saturated aqueous sodium
bicarbonate. The CH2Cl2 layer was separated, and the aqueous phase
was extracted with three 25-mL portions of CH2Cl2. The combined
organic layers were dried (MgSO4), filtered, and concentrated in vacuo.
The residue was chromatographed over 3 g of silica gel (CH2Cl2; then
THF-CH2Cl2, 15:85). The combined fractions from the column
containing product were concentrated in vacuo, and the residue was
recrystallized from EtOAc-hexane to provide 36 mg (83%) of
tetrahydropyran 107 as a white solid: mp 187-189 °C; IR (CCl4) 3199,
1
1715 cm-1; H NMR (300 MHz, CDCl3) δ 2.16 (m, 3H), 2.34 (broad
s, 1H), 2.76 (s, 3H), 2.81 (dd, J ) 13.6, 2.9 Hz, 1H), 3.82 (d, J ) 1.3
Hz, 1H), 3.89 (broad s, 1H), 3.98 (dd, J ) 11.4, 0.9 Hz, 1H), 4.13 (m,
2H), 4.45 (d, J ) 8.6 Hz, 1H), 4.51 and 4.56 (ABq, J ) 11.8 Hz, 2H),
6.82 (d, J ) 7.7 Hz, 1H), 7.03 (td, J ) 7.6, 1.1 Hz, 1H), 7.17-7.32
1
(KBr) 3426, 1720 cm-1; H NMR (300 MHz, CDCl3) δ 1.77 (s, 3H),
1
(m, 6H), 7.38 (d, J ) 7.6 Hz, 1H), 7.70 (broad s, 1H); H NMR (300
2.06 (dd, J ) 17.5, 3.2 Hz, 1H,), 2.34 (broad s, 1H), 2.70 (m, 2H)
2.71 (s, 3H), 3.61 (broad s, 1H), 3.88 (dd, J ) 2.9, 1.9 Hz, 1H), 4.21
(s, 2H), 4.57 (d, J ) 12.2 Hz, 1H), 4.71 (d, J ) 12.2 Hz, 1H), 5.37 (d,
J ) 7.7 Hz, 1H), 6.84 (d, J ) 7.7 Hz, 1H), 7.01 (t, J ) 7.5 Hz, 1H),
7.15-7.26 (m, 5H), 7.29-7.40 (m, 2H), 8.14 (broad, 1H), 9.74 (d, J
) 1.6 Hz, 1H); 13C NMR (75.5 MHz, CDCl3) δ 20.7 (q), 30.1 (q),
31.9 (t), 32.8 (d), 52.8 (d), 53.8 (s), 57.4 (s), 58.6 (d), 63.3 (d), 65.6
(t), 65.6 (d), 73.1 (t), 110.7 (d), 121.3 (d), 125.8 (d), 127.0 (d), 127.4
(d), 127.7 (s), 128.0 (d), 129.0 (d), 138.6 (s), 141.4 (s), 169.1 (s), 175.2
(s), 180.0 (s), 200.6 (d), the overlapping doublet and triplet at 65.6
ppm was assigned from the DEPT spectrum; mass spectrum, m/z (rel
intensity) 488 (M, 0.4), 397 (55), 91 (100), 43 (41); exact mass calcd
for C28H28N2O6 m/z 488.1947, found m/z 488.1948.
(()-(3R*,3′R*,3aS*,5R*,7R*,9R*,9aS*)-9a-[(Benzyloxy)methyl]-
3,3a,7,8,9,9a-hexahydro-2-methylspiro[3,7-epoxy-5,9-methanooxo-
cino[4,5-c]pyrrole-4(5H),3′-indoline]-1(2H),2′-dione (103) and (()-
(3R*,3′R*,4aR*,5S*,8S*,8aS*,9S*)-5-[(Benzyloxy)methyl]-
1,3,4,4a,5,7,8,8a-octahydro-1-hydroxy-7-methylspiro[3,5,8-
ethanylylidene-6H-pyrano[3,4-c]pyridine-10,3′-indoline]-2′,6-
dione (102). To a solution of 62 mg (0.127 mmol) of aldehyde 101 in
MHz, C6D6) δ 1.42 (broad d, 1H), 1.64-1.74 (m, 2H), 2.26 (s, 3H),
2.30 (broad s, 1H), 2.70 (dd, J ) 14.0, 3.2 Hz, 1H), 3.30 (d, J ) 1.4
Hz, 1H), 3.34 (dd, J ) 11.4, 2.0 Hz, 1H), 3.55 (dd, J ) 11.4, 2.2 Hz,
1H), 3.77 (broad s, 1H), 3.38 (d, J ) 8.2 Hz, 1H), 4.62 (d, J ) 12.6
Hz, 1H), 4.63 (d, J ) 8.1 Hz, 1H), 4.73 (d, J ) 12.0 Hz, 1H), 6.30
(dd, J ) 7.7, 0.8 Hz, 1H), 6.86 (td, J ) 7.5, 1.2 Hz, 1H), 6.96 (td, J
) 7.7, 1.3 Hz, 1H), 7.03-7.08 (m, 2H), 7.16-7.18 (m, 1H), 7.28 (ddd,
J ) 7.4, 1.0, 0.4 Hz, 1H), 7.41-7.44 (m, 2H), the NH was not resolved;
13C NMR (75.5 MHz, CDCl3) δ 23.2 (t), 27.5 (q), 30.9 (d), 43.0 (d),
50.0 (d), 53.7 (s), 58.6 (s), 60.6 (t), 65.8 (d), 66.0 (t), 68.7 (d), 72.7 (t),
109.4 (d), 121.7 (d), 126.8 (d), 127.0 (d), 127.6 (d), 127.8 (d), 128.2
(d), 130.7 (s), 138.9 (s), 140.4 (s), 177.4 (s), 178.6 (s); mass spectrum,
m/z (rel intensity) 430 (M, 0.2), 339 (65), 91 (100); exact mass calcd
for C26H26N2O4 m/z 430.1892, found m/z 430.1886.
(()-(3R*,3′R*,4aR*,5S*,8S*,8aS*,9S*)-1,3,4,4a,5,7,8,8a-Octahy-
dro-5-(hydroxymethyl)-7-methylspiro[3,5,8-ethanylylidene-6H-pyrano-
[3,4-c]pyridine-10,3′-indoline]-2′6-dione (114). To a solution of 31
mg (0.072 mmol) of benzyl ether 107 in 20 mL of CH2Cl2 cooled to
-78 °C was added 216 µL (0.216 mmol) of 1 M boron tribromide in