LETTER
Catalyst for Asymmetric Michael Addition of Ketones to Nitroalkenes
1461
O
Ph
Acknowledgment
O
NO2
cat. 3k (5 mol%)
The authors gratefully acknowledge the Natural Science Foundati-
on of China (NSFC 20572087 and 20872120), the Ministry of Edu-
cation, P. R. of China (No. 106141), and the Program for New
Century Excellent Talents (NCET-06-0772) in University for ge-
nerous financial support.
+
Ph
NO2
2-MeC6H4COOH (5 mol%)
n-Hex, r.t., 40 h
83% yield; 98% dr
94% ee (syn)
O
O
Ph
cat. 3k (5 mol%)
References and Notes
NO2
NO2
H
+
Ph
H
2-MeC6H4CO2H (5 mol%)
n-Hex, r.t., 12 h
(1) Perlmutter, P. Conjugate Addition Reactions in Organic
Synthesis; Pergamon: Oxford, 1992.
5a
(CH2)2Me
(CH2)2Me
84% yield, 95% dr
42% ee (syn)
(2) For reviews, see: (a) Tomioka, K.; Nagaoka, Y.;
Yamaguchi, M. In Comprehensive Asymmetric Catalysis;
Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer:
New York, 1999. (b) Berner, O. M.; Tedeschi, L.; Enders,
D. Eur. J. Org. Chem. 2002, 1877. (c) Krause, N.;
Hoffmann-Röder, A. Synthesis 2001, 171. (d) Christoffers,
J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis 2007,
1279.
Scheme 1 Michael addition reactions of other substrates catalyzed
by 3k
The asymmetric additions of cyclohexanone to cis-
nitrostyrene and pentanal to nitrostyrene 5a using 3k as a
catalyst were also investigated. As shown in Scheme 1,
cis-nitrostyrene gave the desired product in 83% yield
with 94% ee. Pentanal also worked well to give the de-
sired products in good yield (84%) and diastereoselectiv-
ity (95% dr) but poor enantioselectivity (42% ee).
(3) (a) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43,
5138. (b) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3,
719. (c) Berkessel, A.; Groger, H. Asymmetric
Organocatalysis: From Biomimetic Concepts to
Applications in Asymmetric Synthesis; Wiley-VCH:
Weinheim, 2005. (d) Tsogoeva, S. B. Eur. J. Org. Chem.
2007, 11, 1701. (e) Connon, S. J. Chem. Commun. 2008,
2499. (f) Vicario, J. L.; Badía, D.; Carrillo, L. Synthesis
2007, 2065. (g) Almaşi, D.; Alonso, D. A.; Nájera, C.
Tetrahedron: Asymmetry 2007, 18, 299. (h) Pellissier, H.
Tetrahedron 2007, 63, 9267.
To account for the stereochemical outcome of the reac-
tion, we propose that the stereocontrol may be explained
by acyclic synclinal transition-state model originally pro-
posed by Seebach and Golinski.15 As shown in Figure 3,
for cyclohexanone, the bulky group CH2C(OMe)(Ph)2
should effectively shield the Si face of an enamine double
bond, which would make nitrostyrene acceptor approach
from the nonshielded side to give the observed major
enantiomer.
(4) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F. III J. Am.
Chem. Soc. 2001, 123, 5260.
(5) List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.
(6) Enders, D.; Seki, A. Synlett 2002, 26.
(7) (a) McCooey, S. H.; Connon, S. J. Org. Lett. 2007, 9, 599.
(b) Liu, K.; Cui, H. F.; Nie, J.; Dong, K. Y.; Li, X. J.; Ma,
J. A. Org. Lett. 2007, 9, 923. (c) Huang, H. B.; Jacobsen,
E. N. J. Am. Chem. Soc. 2006, 128, 7170. (d) Xu, Y. M.;
Córdova, A. Chem. Commun. 2006, 460. (e) Xu, Y. M.;
Zou, W. B.; Sundén, H.; Ibrahem, I.; Córdova, A. Adv.
Synth. Catal. 2006, 348, 418. (f) Luo, S. Z.; Li, J. Y.; Zhang,
L.; Xu, H.; Cheng, J. P. Chem. Eur. J. 2008, 14, 1273.
(g) Mandal, T.; Zhao, C. G. Angew. Chem. Int. Ed. 2008, 47,
7714. (h) Xue, F.; Zhang, S. L.; Duan, W. H.; Wang, W.
Adv. Synth. Catal. 2008, 350, 2194.
Ph
Ph
Ph
Ph
O
N
O
N
N
N
MeO
–O
MeO
O
trans-nitrostyrene
cis-nitrostyrene
Figure 3 Proposed transition-state model
(8) (a) Zu, L. S.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006, 8,
3077. (b) Wang, J.; Li, H.; Lou, B. S.; Zu, L. S.; Guo, H.;
Wang, W. Chem. Eur. J. 2006, 12, 4321. (c) Ishii, T.;
Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc.
2004, 126, 9558. (d) Vishnumaya Singh, V. K. Org. Lett.
2007, 9, 1117. (e) Andrey, O.; Alexakis, A.; Bernardinelli,
G. Org. Lett. 2003, 5, 2559. (f) Alexakis, A.; Andrey, O.
Org. Lett. 2002, 4, 3611. (g) Mase, N.; Watanabe, K.; Yoda,
H.; Takabe, K.; Tanaka, F.; Barbas, C. F. III J. Am. Chem.
Soc. 2006, 128, 4966. (h) Pansare, S. V.; Pandya, K. J. Am.
Chem. Soc. 2006, 128, 9624. (i) Cao, Y. J.; Lai, Y. Y.;
Wang, X.; Li, Y. J.; Xiao, W. J. Tetrahedron Lett. 2007, 48,
21. (j) Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Org. Lett.
2006, 8, 2901. (k) Tsogoeva, S. B.; Wei, S. W. Chem.
Commun. 2006, 1451. (l) Luo, S. Z.; Xu, H.; Mi, X. L.; Li,
J. Y.; Zheng, X. X.; Cheng, J. P. J. Org. Chem. 2006, 71,
9244. (m) Yan, Z. Y.; Niu, Y. N.; Wei, H. L.; Wu, L. Y.;
Zhao, Y. B.; Liang, Y. M. Tetrahedron: Asymmetry 2006,
17, 3288. (n) Mitchell, C. E. T.; Cobb, A. J. A.; Ley, S. V.
Synlett 2005, 611. (o) Betancort, J. M.; Sakthivel, K.;
Thayumanavan, R.; Tanaka, F.; Barbas, C. F. III Synthesis
In conclusion, we have developed a novel organocatalytic
system for Michael addition of ketones to nitroalkenes,
which is composed of homodiphenylprolinol methyl ether
as the catalyst and o-methylbenzoic acid as the additive.
Only 5 mol% catalyst loading was sufficient for good
yields (up to 99%) and high stereoselectivities (up to 98%
dr and 98% ee), and only room temperature is required. It
is by far the lowest catalyst load for direct Michael reac-
tion of ketones to nitroalkenes. Further investigations of
the applications of this organocatalytic system in other
asymmetric reactions are in progress.
Supporting Information for this article is available online at
Synlett 2009, No. 9, 1457–1462 © Thieme Stuttgart · New York