S. D. Kuduk et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2538–2541
2541
Table 3
Permeability, P-gp, and bioanalysis of plasma, brain, and CSF levels for selected compounds
Pappa
MDR1b
MDR1ab
Plasma concnc (nM)
Brain concnc (nM)
CSF concnc (nM)
B/P
CSF/Uplasma
d
Compd
10e
10r
10x
20
2.8
19
1.5
3.5
2.2
1.9
8.1
7.3
6145
—
26677
146
—
368
87
—
110
0.03
—
0.01
0.22
—
0.10
a
b
c
Passive permeability (10À6 cm/s).
MDR1 Directional Transport Ratio (B to A)/(A to B). Values represent the average of three experiments and interassay variability was 20%.
Sprague-Dawley rats. Oral dose 10 mg/kg in 0.5% methocel. Interanimal variability was less than 20% for all values.
CSF to unbound plasma ratio determined using rat plasma protein binding from Tables 1 and 2.
d
improvement over compound 1, where ꢀ33
l
M plasma was re-
120
quired for in vivo efficacy.
110
100
90
80
70
60
50
40
30
20
10
0
Vehicle
In summary, a series of substituted cycloalkyl fused pyridone car-
boxylic acids in lieu of quinolone carboxylic acids were prepared and
evaluated. Optimal A-rings were the cyclohexane and 5-hydroxy
cyclohexane 10e. The SAR for B/C-ring combinations of 10e was flat
relative to previous data with the quinolones. Potentiator 10e
showed adequate CNS exposure and performed very well in a mouse
model of episodic memory. Additional structural types employing
the hydroxycyclohexane A-ring motif are undergoing evaluation.
0.01µM 10e
0.1µM 10e
1µM 10e
10µM 10e
100µM 10e
-10
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
References and notes
Log[M], Acetylcholine
1. Bonner, T. I. Trends Neurosci. 1989, 12, 148.
2. Bonner, T. I. Trends Pharmacol. Sci. 1989, 11.
Figure 2.
3. Geula, C. Neurology 1998, 51, 18.
4. Levey, A. I. Proc. Natl. Acad. Sci. 1996, 93, 13451.
5. Langmead, C. J. Pharmacol. Ther. 2008, 117, 232.
70
60
50
40
30
20
10
0
Vehicle
6. Bodick, N. C.; Offen, W. W.; Levey, A. I.; Cutler, N. R.; Gauthier, S. G.; Satlin, A.;
Shannon, H. E.; Tollefson, G. D.; Rasumussen, K.; Bymaster, F. P.; Hurley, D. J.;
Potter, W. Z.; Paul, S. M. Arch. Neurol. 1997, 54, 465.
7. Greenlee, W.; Clader, J.; Asbersom, T.; McCombie, S.; Ford, J.; Guzik, H.;
Kozlowski, J.; Li, S.; Liu, C.; Lowe, D.; Vice, S.; Zhao, H.; Zhou, G.; Billard, W.;
Binch, H.; Crosby, R.; Duffy, R.; Lachowicz, J.; Coffin, V.; Watkins, R.; Ruperto,
V.; Strader, C.; Taylor, L.; Cox, K. Il Farmaco 2001, 56, 247.
8. Conn, P. J.; Christopulos, A.; Lindsley, C. W. Nat. Rev. Drug Disc. 2009, 8, 41.
9. For an example of an allosteric activator of the M1 receptor, see Jones, C. K.;
Brady, A. E.; Davis, A. A.; Xiang, Z.; Bubser, M.; Noor-Wantawy, M.; Kane, A. S.;
Bridges, T. M.; Kennedy, J. P.; Bradley, S. R.; Peterson, T. E.; Ansari, M. S.;
Baldwin, R. M.; Kessler, R. M.; Deutch, A. Y.; Lah, J. J.; Levey, A. I.; Lindsley, C.
W.; Conn, P. J. J. Neurosci. 2008, 41, 10422.
10. Ma, L.; Seager, M.; Wittmann, M.; Bickel, D.; Burno, M.; Jones, K.; Kuzmick-
Graufelds, V.; Xu, G.; Pearson, M.; McCampbell, A.; Gaspar, R.; Shughrue, P.;
Danziger, A.; Regan, C.; Garson, S.; Doran, S.; Kreatsoulas, C.; Veng, L.; Lindsley,
C.; Shipe, W.; Kuduk, S. D.; Jacobsen, M.; Sur, C.; Kinney, G.; Seabrook, G.; Ray,
W. J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15950.
Scop (0.3 mpk)
Scop/10e (3 mpk)
Scop/10e (10 mpk)
Scop/10e (30 mpk)
#
#
#
*
Baseline
24 Hr
Figure 3.
11. Shirey, J. K.; Brady, A. E.; Jones, P. J.; Davis, A. A.; Bridges, T. M.; Kennedy, J. P.;
Jadhav, S. B.; Menon, U. N.; Xiang, Z.; Watson, M. L.; Christian, E. P.; Doherty, J.
J.; Quirk, M. C.; Snyder, D. H.; Lah, J. J.; Nicolle, M. M.; Lindsley, C. W.; Conn, P. J.
J. Neurosci. 2009, 45, 14271.
azole 10x exhibited robust plasma levels, but a lower CSF/Uplasma
ratio of 0.10, which could be attributed to the result of 10x being
a substrate for rat P-gp.
12. Yang, F. V.; Shipe, W. D.; Bunda, J. L.; Wisnoski, D. D.; Zhao, Z.; Lindsley, C. W.;
Ray, W. J.; Ma, L.; Wittmann, M.; Seager, M. W.; Koeplinger, K.; Thompson, C.
D.; Hartman, G. D. Bioorg. Med. Chem. Lett. 2009, 19, 531.
13. Kuduk, S. D.; Di Marco, C. N.; Chang, R. K.; Ray, W. J.; Ma, L.; Wittmann, M.;
Seager, M.; Koeplinger, K. A.; Thompson, C. D.; Hartman, G. D.; Bilodeau, M. T.
Bioorg. Med. Chem. Lett. 2010, 20, preceding paper.
14. Gould, R. G.; Jacobs, W. A. J. Am. Chem. Soc. 1939, 61, 2890.
15. Agui, H.; Tobiki, H.; Nakagome, T. J. Heterocycl. Chem. 1975, 12, 1245.
16. Select compounds were examined in functional assays at other muscarinic
receptors and showed no activity at M2, M3, or M4 receptors.
17. Prepared via methylation of 10e (NaH, MeI, DMF) followed by ester hydrolysis.
18. Kuduk, S. D.; Di Marco, C. N.; Cofre, V.; Pitts, D. R.; Ray, W. J.; Ma, L.; Wittmann,
M.; Seager, M.; Koeplinger, K. A.; Thompson, C. D.; Hartman, G. D.; Bilodeau, M.
T. Bioorg. Med. Chem. Lett. 2010, 20, 657.
Compound 10e was evaluated for the ability to fold potentiate a
dose response of acetylcholine (Fig. 2). In the presence of 1 lM or
greater concentration of potentiator 10e, a leftward-shift was ob-
served in the acetylcholine dose response curve showing it is a po-
tent positive allosteric modulator of the human M1 receptor. No
effects were seen at concentrations that were below the inflection
point (440 nM) of 10e.
Based on the observed M1 potency and reasonable CSF/Uplasma
ratio, compound 10e was evaluated in a mouse contextual fear
conditioning assay, which serves as a model of episodic memory
(Fig. 3). In this experiment, mice were treated with scopolamine
before introduction to a novel environment to block this new asso-
ciation. Mice dosed ip with all three doses of 10e exhibited a full
reversal compared to mice treated with scopolamine alone. The
19. Kuduk, S. D.; Di Marco, C. N.; Cofre, V.; Pitts, D. R.; Ray, W. J.; Ma, L.; Wittmann,
M.; Seager, M.; Koeplinger, K. A.; Thompson, C. D.; Hartman, G. D.; Bilodeau, M.
T. Bioorg. Med. Chem. Lett. 2010, 20, 1334.
20. Conn, P. J.; Jones, C.; Lindsley, C. W. Trends Pharmacol. Sci. 2009, 30, 148.
21. CSF levels were not examined.
corresponding plasma levels at 3 mpk were 6 l
M,21 a notable