10.1002/anie.201911651
Angewandte Chemie International Edition
COMMUNICATION
Classics in Stereoselective Synthesis. E. M. Carreira, L. Kvaerno, Eds.;
Wiley-VCH: Weinheim, 2009.
Since Z-configured substrates generally gave higher
enantioselectivities, the reaction with the opposite catalyst
antipode was performed (Figure 4, top). Geometrical
isomerisation constitutes a practical advantage enabling both
stereoisomers to be prepared in an optically pure manner (99:1
and 1:99 e.r.). Furthermore, the reaction could be executed in a
one-pot fashion from the E-isomer as is demonstrated in Figure
[2]
[3]
B. M. Trost, Proc. Natl. Acad. Sci. USA 2004, 101, 5348-5355.
(a) H.-U. Blaser, Chem. Rev. 1992, 92, 935-952. (b) W. A. Nugent, T. V.
Rajanbabu, M. J. Burk, M. J. Science 1993, 259, 479-483.
For an excellent commentary on the origin of biomolecular
homochirality, see M. Bolli, R. Micura, A. Eschenmoser, Chem. Biol.
1997, 4, 309-320.
[4]
[5]
4
(bottom). In conclusion, an enabling approach to
For excellent reviews, see (a) S. Krautwald, E. M. Carreira, J. Am.
Chem. Soc. 2017, 139, 5627-5639. (c) I. P. Beletskaya, C. Nájera, M.
Yus, Chem. Rev. 2018, 118, 5080−5200.
enantiodivergence is disclosed that is predicated on efficient
geometrical isomerisation of vinyl phosphonates via selective
energy transfer catalysis using anthracene (up to Z:E 99:1).
Although valuable in its own right, this reaction provides a
stimulus prior to stereospecific hydrogenation allowing both
product enantiomers to be generated from a single optically
active catalyst (up to 99:1 e.r.). This additional dimension to
external asymmetric induction may prove to be expansive,
particularly where the opposite catalyst enantiomer is
prohibitively expensive or is unobtainable.
[6]
[7]
[8]
[9]
J. Escorihuela, M. I. Burguete, S. V. Luis, Chem. Soc. Rev. 2013, 12,
5595-5617.
Y. Inoue, T. Yokoyama, N. Yamasaki, A. Tai, Nature 1989, 341, 225-
226.
Z. S. Kean, S. Akbulatov, Y. Tian, R. A. Widenhoefer, R. Boulatov, S. L.
Craig, Angew. Chem. Int. Ed. 2014, 53, 14508-14511.
For examples of light-induced molecular motor-based ligands, see (a) J.
Wang, B. L. Feringa, Science 2011, 331, 1429-1432. (b) D. Zhao, T. M.
Neubauer, B. L. Feringa, Nat. Commun. 2015, 6:6652 doi:
10.1038/ncomms7652.
[10] For excellent discussions of photo-responsive catalysis, see (a) M. V.
Peters, R. S. Stoll, A. Kühn, S. Hecht, Angew. Chem. Int. Ed. 2008, 47,
5968-5972. (b) R. S. Stoll, S. Hecht, Angew. Chem. Int. Ed. 2010, 49,
5054-5075.
[11] For an elegant example of imine isomerisation by direct irradiation, see
P. Renzi, J. Hioe, R. M. Gschwind, J. Am. Chem. Soc. 2017, 139,
6752-6760.
[12] A. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209-219.
[13] (a) C. Dugave, L. Demange, Chem. Rev. 2003, 103, 2475-2532 (b) C.
M. Pearson, T. N. Snaddon, ACS Cent. Sci. 2017, 3, 922-924; (c) J. B.
Metternich, R. Gilmour, Synlett 2016, 27, 2541–2552. (d) J. J. Molloy, T.
Morack, R. Gilmour. Angew. Chem. Int. Ed. 2019, DOI:
10.1002/anie.201906124.
[14] (a) K. Singh, S. J. Staig, J. Weaver, J. Am. Chem. Soc. 2014, 136,
5275-5278. (b) J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2015,
137, 11254–11257. (c) J. B. Metternich, R. Gilmour, J. Am. Chem. Soc.
2016, 138, 1040–1045. (d) J. D. Metternich, D. G. Artiukhin, M. C.
Holland, M. von Bremen-Kühne, J. Neugebauer, R. Gilmour, J. Org.
Chem. 2017, 82, 9955–9977. (e) J. J. Molloy, J. B. Metternich, C. G.
Daniliuc, A. J. B. Watson, R. Gilmour, Angew. Chem. Int. Ed. 2018, 57,
3168-3172; (f) S. I. Faßbender, J. J. Molloy, C. Mück-Lichtenfeld, R.
Gilmour, Angew. Chem. 2019, DOI:10.1002/ange.201910169; Angew.
Chem. Int. Ed. 2019, DOI: 10.1002/anie.201910169.
[15] G. P. Horsman, D. L. Zechel, Chem. Rev. 2017, 117, 5704-5783.
[16] (a) J. Boutagy, R. Thomas, Chem. Rev. 1974, 74, 87-99. (b) T. Minami,
J. Motoyoshiya, Synthesis 1992, 333-349. (c) T. Minami, T. Okauchi, R.
Kouno, Synthesis 2001, 349-357.
Figure 4. Top: Exploring both catalysts and alkene geometries. Bottom: A one
pot, stereodivergent synthesis.
[17] For selected reviews, see (a) A. Pfaltz, Acc. Chem. Res. 1993, 26,
339–345. (b) W. S. Knowles, Angew. Chem. Int. Ed. 2002, 41, 1998–
2007. (c) S. J. Roseblade, A. Pfaltz, Acc. Chem. Res. 2007, 40, 1402-
1411. (d) D. Wang, D. Astruc, Chem. Rev. 2015 115, 6621-6686. (e) P.
Etayo, A. Vidal-Ferran, Chem. Soc. Rev. 2013, 42, 728-754. (f) For an
elegant example of Ir-catalysed stereospecific hydrogenation, see S.
Bell, B. Wüstenberg, S. Kaiser, F. Menges, T. Netscher, A. Pfaltz,
Science 2006, 311, 642-644.
Experimental Section
Full details are provided in the Supporting Information.
Acknowledgements
[18] E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry,
University Science Books: USA, 2005.
We acknowledge financial support from the WWU Münster, and
thank M.Sc. Tobias Morack for helpful discussions.
[19] R. W. Hoffmann, Chem. Rev. 1989, 89, 1841-1860.
[20] For recent reviews on photocatalysis highlighting energy transfer, see:
(a) L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed.
2018, 57, 10034-10072; Angew. Chem. 2018, 130, 10188-10228; (b) F.
Streith-Kalthoff, M. J. James, M. Teders, L. Pitzer, F. Glorius, Chem.
Soc. Rev. 2018, 47, 7190-7202. (c) Q. -Q. Zhou, Y. -Q. Zou, L. -Q. Lu,
W.-J. Xiao, Angew. Chem. Int. Ed. 2019, 58, 1586–1604; Angew. Chem.
2019, 131, 1600–1619.
Keywords: catalysis • energy transfer • hydrogenation •
organophotocatalysis • stereodivergence
[1]
(a) Comprehensive Asymmetric Catalysis; E. N. Jacobsen, A. Pfaltz, H.
Yamamoto, Eds.; Springer: New York, 1999; Vols. I–III, Suppl. I–II. (b)
This article is protected by copyright. All rights reserved.