Page 7 of 8
ACS Catalysis
(7) (a) Tobisu, M.; Nakamura, K.; Chatani, N. Nickel-
Besset, T.; Maes, B. U. W.; Schnürch, M. A Comprehensive
Overview of Directing Groups Applied in Metal-Catalysed C–H
Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47, 6603-
6743.
(13) For reviews on Ru(0)-catalysis, see: (a) Activation of
Unreactive Bonds and Organic Synthesis, Murai, S., Ed.; Springer:
Berlin, 1999. (b) Kakiuchi, F.; Kochi, T.; Murai, S. Chelation-
Assisted Regioselective Catalytic Functionalization of C–H, C–O,
C–N and C–F Bonds. Synlett 2014, 25, 2390-2414.
(14) For reviews on Ru(II)-catalysis, see: (a) Arockiam, P. B.;
Bruneau, C.; Dixneuf, P. H. Ruthenium(II)-Catalyzed C–H Bond
Activation and Functionalization. Chem. Rev. 2012, 112, 5879-
5918. (b) De Sarkar, S.; Liu, W.; Kozushkov, S. L.; Ackermann, L.
Weakly-Coordinating Directing Groups for Ruthenium(II)-
Catalyzed C-H Activation. Adv. Synth. Catal. 2014, 356, 1461-1479.
(15) For a comprehensive review on Ru-catalyzed C–H
arylation, see: Nareddy, P.; Jordan, F.; Szostak, M. Recent
Developments in Ruthenium-Catalyzed C–H Arylation: Array of
Mechanistic Manifolds. ACS Catal. 2017, 7, 5721-5745.
Catalyzed Reductive and Borylative Cleavage of Aromatic
Carbon–Nitrogen Bonds in N-Aryl Amides and Carbamates. J.
Am. Chem. Soc. 2014, 136, 5587-5590. (b) Shi, S.; Meng, G.;
Szostak, M. Synthesis of Biaryls through Nickel-Catalyzed
Suzuki-Miyaura Coupling of Amides by Carbon-Nitrogen Bond
Cleavage. Angew. Chem. Int. Ed. 2016, 55, 6959-6963. (c) Liu, C.;
Li, G.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M.
Acyl and Decarbonylative Suzuki Coupling of N-Acetyl Amides:
Electronic Tuning of Twisted, Acyclic Amides in Catalytic
Carbon−Nitrogen Bond Cleavage. ACS Catal. 2018, 8, 9131-9139.
(d) Zhang, Z. B.; Ji, C. L.; Yang, C.; Chen, J.; Hong, X.; Xia, J. B.
Nickel-Catalyzed Kumada Coupling of Boc-Activated Aromatic
Amines via Nondirected Selective Aryl C–N Bond Cleavage. Org.
Lett. 2019, 21, 1226-1231.
(8) (a) Lei, Y.; Wrobleski, A. D.; Golden, J. E.; Powell, D. R.;
Aubé, J. Facile C–N Cleavage in a Series of Bridged Lactams. J.
Am. Chem. Soc. 2005, 127, 4552-4553. (b) Hu, F.; Lalancette, R.;
Szostak, M. Structural Characterization of N-Alkylated Twisted
Amides: Consequences for Amide Bond Resonance and N–C
Cleavage. Angew. Chem. Int. Ed. 2016, 55, 5062-5066.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) For selected studies on Ru-catalysis, see: (a) Chinnagolla,
R. K.; Jeganmohan, M. Regioselective Ortho-Arylation and
Alkenylation of N-Alkyl Benzamides with Boronic Acids via
Ruthenium–Catalyzed C–H Bond Activation: An Easy Route to
Fluorenones Synthesis. Org. Lett. 2012, 14, 5246-5249. (b)
Chinnagolla, R. K.; Jeganmohan, M. Ruthenium Catalyzed
Ortho-Arylation of Acetanilides with Aromatic Boronic Acids:
An Easy Route to Prepare Phenanthridines and Carbazoles.
Chem. Commun. 2014, 50, 2442-2444. (c) Chinnagolla, R. K.;
Vijeta, A.; Jeganmohan, M. Ruthenium- and Palladium-Catalyzed
Consecutive Coupling and Cyclization of Aromatic Sulfoximines
with Phenylboronic Acids: An Efficient Route to
Dibenzothiazines. Chem. Commun. 2015, 51, 12992-12995. (d)
Manikandan, R.; Madasamy, P.; Jeganmohan, M. Ruthenium–
Catalyzed ortho Alkenylation of Aromatics with Alkenes at
Room Temperature with Hydrogen Evolution. ACS Catal. 2016,
6, 230-234. (e) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.;
Dixneuf, P. H. C–H Bond Functionalization in Water Catalyzed
by Carboxylato Ruthenium(II) Systems. Angew. Chem., Int. Ed.
2010, 49, 6629-6632. (f) Flegeau, E. F.; Bruneau, C.; Dixneuf, P.
H.; Jutand, A. Autocatalysis for C–H Bond Activation by
Ruthenium(II) Complexes in Catalytic Arylation of Functional
Arenes. J. Am. Chem. Soc. 2011, 133, 10161-10170. (g) Ackermann, L.
Phosphine Oxides as Preligands in Ruthenium-Catalyzed
Arylations via C-H-Bond Functionalization Using Aryl Chlorides.
Org. Lett. 2005, 7, 3123-3125. (h) Ackermann, L.; Althammer, A.;
Born, R. Catalytic Arylation Reactions by C-H Bond Activation
with Aryl Tosylates. Angew. Chem., Int. Ed. 2006, 45, 2619-2622.
(i) Li, J.; Korvorapun, K.; De Sarkar, S.; Rogge, T.; Burns, D. J.;
Warratz, S.; Ackermann, L. Ruthenium(II)-Catalysed Remote C–
H Alkylations as a Versatile Platform to Meta-Decorated Arenes.
Nat. Commun. 2017, 8, 15430. (j) Kakiuchi, F.; Kan, S.; Igi, K.;
Chatani, N.; Murai, S. A Ruthenium-Catalyzed Reaction of
Aromatic Ketones with Arylboronates: A New Method for the
Arylation of Aromatic Compounds via C-H Bond Cleavage. J.
Am. Chem. Soc. 2003, 125, 1698-1699. (k) Kakiuchi, F.; Matsuura,
(9) Ueno, S.; Chatani, N.; Kakiuchi, F. Ruthenium-Catalyzed
Carbon–Carbon Bond Formation via the Cleavage of an
Ureactive Aryl Carbon–Nitrogen Bond in Aniline Derivatives
with Organoborates. J. Am. Chem. Soc. 2007, 129, 6098-6099.
(10) Cong, X.; Fan, F.; Ma, P.; Luo, M.; Chen, H.; Zeng, X. Low-
Valent, High-Spin Chromium-Catalyzed Cleavage of Aromatic
Carbon–Nitrogen Bonds at Room Temperature: A Combined
Experimental and Theoretical Study. J. Am. Chem. Soc. 2017, 139,
15182-15190.
(11) (a) Shi, S.; Nolan, S. P.; Szostak, M. Well-Defined
Palladium(II)-NHC
(NHC
=
N-Heterocyclic
Carbene)
Precatalysts for Cross-Coupling Reactions of Amides and Esters
by Selective Acyl CO–X (X = N, O) Cleavage. Acc. Chem. Res.
2018, 51, 2589-2599. (b) Liu, C.; Szostak, M. Twisted Amides:
From Obscurity to Broadly Useful Transition-Metal-Catalyzed
Reactions by N–C Amide Bond Activation. Chem. Eur. J.2017, 23,
7157-7173.
(12) For selected reviews on C–H activation, see: (a) Science of
Synthesis: Catalytic Transformations via C–H Activation, 1st ed.;
Yu, J. Q., Ed.; Thieme: Stuttgart, 2015. (b) Davies, H. M. L.;
Morton, D. Recent Advances in C–H Functionalization. J. Org.
Chem. 2016, 81, 343-350. (c) Rossi, R.; Bellina, F.; Lessi, M.;
Manzini, C. Cross-Coupling of Heteroarenes by C-H
Functionalization: Recent Progress towards Direct Arylation and
Heteroarylation Reactions Involving Heteroarenes Containing
One Heteroatom. Adv. Synth. Catal. 2014, 356, 17-117. (d)
Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp2)-H
and C(sp3)-H Bonds by Using Bidentate Directing Groups.
Angew. Chem. Int. Ed. 2013, 52, 11726-11743. (e) Yeung, C. S.;
Dong, V. M. Catalytic Dehydrogenative Cross-Coupling: Forming
Carbon−Carbon Bonds by Oxidizing Two Carbon−Hydrogen
Bonds. Chem. Rev. 2011, 111, 1215-1292. (f) Lyons, T.; Sanford, M.
Palladium-Catalyzed Ligand-Directed C−H Functionalization
Reactions. Chem. Rev. 2010, 110, 1147-1169. (g) Ackermann, L.;
Vicente, R.; Kapdi, A. R. Transition-Metal-Catalyzed Direct
Arylation of (Hetero)arenes by C–H Bond Cleavage. Angew.
Chem. Int. Ed. 2009, 48, 9792-9826. For a recent review on 3d
transition metals in C–H activation, see: (h) Gandeepan, P.;
Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d
Transition Metals for C–H Activation. Chem. Rev. 2019, 119, 2192-
2452. For a recent review on directing groups, see: (i) Sambiagio,
C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.;
Schaaf, P.; Wiesinger, T.; Farooq Zia, M.; Wencel-Delord, J.;
Y.; Kan, S.; Chatani, N.
A
RuH2(CO)(PPh3)3-Catalyzed
Regioselective Arylation of Aromatic Ketones with Arylboronates
via Carbon-Hydrogen Bond Cleavage. J. Am. Chem. Soc. 2005,
127, 5936-5945.
(17) For examples of sustainable Ru-catalyzed C–H
functionalization, see: (a) Lee, D. H.; Kwon, K. H.; Yi, C. S.
Selective Catalytic C–H Alkylation of Alkenes with Alcohols.
Science 2011, 333, 1613-1616. (b) Kim, J.; Pannilawithana, N.; Yi, C.
S. Catalytic Tandem and One-Pot Dehydrogenation–Alkylation
7
ACS Paragon Plus Environment