Synthesis of BTPAF1. A solution of BF3$OEt2 (0.15 ml,
1.2 mmol) in 2 ml of dichloromethane was added dropwise to
a solution of 9-phenyl-9H-fluoren-9-ol (0.26 g, 1 mmol) and
BTPA1 (0.31 g, 0.5 mmol) in 10 ml dichloromethane. The
mixture was stirred at room temperature under argon atmo-
sphere for 3 h. Ethanol (5 ml) and water (15 ml) was successively
added to quench the reaction. The mixture was extracted with
dichloromethane, and then the combined dichloromethane
solution was washed with brine and dried over with anhydrous
sodium sulfate. After removal of the solvent, the crude product
was purified by silicon gel chromatography using 2 : 1 (v : v)
petroleum–chloroform as the eluent to afford the product as
Computational details
The geometrical and electronic properties of the compounds
were performed with the Gaussian 03 program package. The
calculation was optimized by means of the B3LYP (Becke three
parameters hybrid functional with Lee-Yang-Perdew correlation
functionals) with the 6-31G(d) atomic basis set 32. Molecular
orbitals were visualized using Gaussview.
Acknowledgements
We thank the National Natural Science Foundation of China
(Project Nos. 90922020, 50773057 and 20621401), and the
National Basic Research Program of China (973 Program-
2009CB623602, 2009CB930603) for financial support.
1
white solid. Yield: 86%. H NMR (300 MHz, CDCl3, d): 7.67
(d, J ¼ 7.2 Hz, 4H), 7.27–7.25 (m, 6H), 7.19–7.02 (m, 24H),
6.99–6.81 (m, 16H), 6.74–6.62 (m, 4H), 1.04 (s, 9H); 13C NMR
(75 MHz, CDCl3, d): 151.66, 151.46, 146.86, 146.22, 146.06,
140.32, 140.11, 138.92, 137.51, 134.92, 131.87, 131.54, 131.16,
129.31, 128.11, 127.87, 127.71, 127.64, 127.42, 126.45, 126.23,
125.53, 125.35, 120.26, 120.11, 116.51, 65.04, 57.64, 34.48, 31.54.
Anal. Calcd. for C86H63N (%): C, 93.02; H, 5.72; N, 1.26. Found:
C, 93.00; H, 5.92; N, 1.15. MS (MALDI-TOF) m/z 1109.8 [M+].
References
1 (a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151;
(b) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson
and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4; (c) R. C. Kwong,
M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y.-J. Tung,
M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson,
S. R. Forrest and J. J. Brown, Appl. Phys. Lett., 2002, 81, 162;
(d) X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses and
A. J. Heeger, Appl. Phys. Lett., 2002, 81, 3711; (e) X. Gong,
J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu
and A. K. Y. Jen, Adv. Mater., 2003, 15, 258; (f) Y. You, C.-G. An,
D.-S. Lee, J.-J. Kim and S. Y. Park, J. Mater. Chem., 2006, 16,
BTPAF2. BTPAF2 was synthesized according to the same
procedure as BTPAF1 except for using BTPA2 (0.34 g,
1
0.5 mmol) to replace BTPA1. Yield: 67%. H NMR (300 MHz,
CDCl3, d): 7.66 (d, J ¼ 6.6 Hz, 4H), 7.29–7.24 (m, 6H), 7.14–7.04
(m, 8H), 6.94–6.83 (m, 18H), 6.77–6.66 (m, 12H), 2.32 (s, 6H),
2.24 (s, 6H), 2.23 (s, 6H), 1.07 (s, 9H); 13C NMR (75 MHz,
CDCl3, d): 152.00, 151.79, 144.25, 143.38, 143.17, 140.29, 140.01,
138.61, 137.45, 135.82, 135.60, 135.43, 135.00, 131.83, 131.42,
129.18, 128.86, 128.59, 128.01, 127.72, 127.61, 127.28, 127.32,
126.47, 126.18, 125.43, 125.13, 120.24, 120.07, 116.58, 64.71,
56.93, 34.54, 31.67, 21.31, 21.22. Anal. Calcd. for C92H75N (%):
C, 92.50; H, 6.33; N, 1.17. Found: C, 92.02; H, 6.40; N, 0.81; MS
(MALDI-TOF) m/z 1193.9 [M+].
€
4706; (g) X. Yang, D. C. Muller, D. Neher and K. Meerholz, Adv.
Mater., 2006, 18, 948; (h) G. Zhou, W.-Y. Wong, B. Yao, Z. Xie
and L. Wang, Angew. Chem. Int. Ed., 2007, 46, 1149; (i) C. Yang,
X. Zhang, H. You, L. Y. Zhu, L. Chen, L. N. Zhu, Y. Tao, D. Ma,
Z. Shuai and J. Qin, Adv. Funct. Mater., 2007, 17, 651; (j) S.-J. Lee,
J. S. Park, M. Song, K.-J. Yoon, Y. I. Kim, S.-H. Jin and
H.-J. Seo, Appl. Phys. Lett., 2008, 92, 193312/1; (k) S.-C. Lo,
R. N. Bera, R. E. Harding, P. L. Burn and I. D. W. Samuel, Adv.
Funct. Mater., 2008, 18, 3080; (l) B. X. Mi, P. F. Wang, Z. Q. Gao,
C. S. Lee, S. T. Lee, H. L. Hong, X. M. Chen, M. S. Wong,
P. F. Xia, K. W. Cheah, C. H. Chen and W. Huang, Adv. Mater.,
2009, 21, 339.
2 (a) K. T. Kamtekar, C. Wang, S. Bettington, A. S. Batsanov,
I. F. Perepichka, M. R. Bryce, J. H. Ahn, M. Rabinal and
M. C. Petty, J. Mater. Chem., 2006, 16, 3823; (b) S.-J. Su,
H. Sasabe, T. Takeda and J. Kido, Chem. Mater., 2008, 20, 1691;
(c) Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin
and D. Ma, Angew. Chem. Int. Ed., 2008, 47, 8104; (d) Y. Tao,
Q. Wang, C. Yang, K. Zhang, Q. Wang, T. Zou, J. Qin and D. Ma,
J. Mater. Chem., 2008, 18, 4091; (e) M.-Y. Lai, C.-H. Chen,
W.-S. Huang, J. T. Lin, T.-H. Ke, L.-Y. Chen, M.-H. Tsai and
C.-C. Wu, Angew. Chem. Int. Ed., 2008, 47, 581; (f) S. Ye, Y. Liu,
C. Di, H. Xi, W. Wu, Y. Wen, K. Lu, C. Du, Y. Liu and G. Yu,
Chem. Mater., 2009, 21, 1333; (g) F.-M. Hsu, C.-H. Chien,
P.-I. Shih and C.-H. Cheng, Chem. Mater., 2009, 21, 1017.
3 (a) M. H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong,
M. Hack and J. J. Brown, Appl. Phys. Lett., 2002, 81, 3921;
(b) K. Brunner, A. van Dijken, J. J. A. M. Bastiaansen,
N. M. M. Kiggen and B. M. W. Langeveld, J. Am. Chem. Soc.,
2004, 126, 6035; (c) D. Hu, P. Lu, C. Wang, H. Liu, H. Wang,
Z. Wang, T. Fei, X. Gu and Y. Ma, J. Mater. Chem., 2009, 16,
6143; (d) H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung,
T.-C. Wang and K.-T. Wong, J. Mater. Chem., 2009, 19, 8112.
4 (a) C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich,
M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett.,
2001, 79, 2082; (b) R. J. Holmes, S. R. Forrest, Y.-J. Tung,
R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl.
Phys. Lett., 2003, 82, 2422; (c) S. Tokito, T. Iijima, Y. Suzuri,
H. Kita, T. Tsuzuki and F. Sato, Appl. Phys. Lett., 2003, 83, 569;
(d) R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li
and M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818; (e) X. Ren,
Device fabrication and measurement
The hole-injection material MoO3, hole-transporting material
NPB
(1,4-bis(1-naphthylphenylamino)-biphenyl),
exciton
blocking material TCTA (4,40,400-tri(N-carbazolyl)triphenyl-
amine), hole-blocking and electron-transporting material TAZ
(3-(4-biphenyl-yl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole)
were commercially available. Commercial indium tin oxide
(ITO) coated glass with sheet resistance of 10U/square was used
as the starting substrates. Before device fabrication, the ITO
glass substrates were pre-cleaned carefully and treated by UV/O3
for 2 min. Then the sample was transferred to the deposition
system. 10 nm of MoO3 was firstly deposited to ITO substrates,
followed by 80 nm NPB, 5 nm TCTA, emissive layer, 40 nm
TAZ. Finally, a cathode composed of 1 nm of lithium fluoride
and 100 nm of aluminium was sequentially deposited onto the
substrates in the vacuum of 10ꢁ6 Torr to construct the device.
The I–V-B of EL devices was measured with a Keithey 2400
Source meter and a Keithey 2000 Source multimeter equipped
with a calibrated silicon photodiode. The EL spectra were
measured by JY SPEX CCD3000 spectrometer. All measure-
ments were carried out at room temperature under ambient
conditions.
3236 | J. Mater. Chem., 2010, 20, 3232–3237
This journal is ª The Royal Society of Chemistry 2010