pubs.acs.org/joc
converted to tetramers.4 Hence, the availability of dimers
Efficient Synthesis of 5,6-Dihydroxyindole Dimers,
Key Eumelanin Building Blocks, by a Unified
o-Ethynylaniline-Based Strategy for the Construction
of 2-Linked Biindolyl Scaffolds
from 1 is of paramount importance to enquire into the broad
diversity of oligomeric architectures expected to concur with
eumelanin buildup.5 Additional motivations for pursuing
1-derived dimers as synthetic targets derived from recogni-
tion of eumelanin-like polymers as new prototypes of bioin-
spired functional materials.6-8 Moreover, 2,20-biindolyls are
of current interest as structural motifs for the preparation of
anion sensing architectures,9 and 1-based oligomers have
recently been shown to exhibit fluoride-sensing properties.10
Whereas numerous synthetic efforts have been directed
to 1,11,12 the current synthetic repertoire for the preparation
of related dimers is scanty, the only exception being the
synthesis of the 3,30-biindolyl.13 Considerable constraints to
the possible synthetic plans are posed by the highly oxidizable
o-dihydroxy functionality, which requires careful selection of
protecting groups, reagents, and reaction conditions. Accord-
ingly experimental control over oxidation pathways of 1 repre-
sented so far the only means of gaining access to small amounts
of dimers for structural investigations. While 2 can be practi-
cally obtained in sufficient amounts by oxidative coupling of 1,
the other dimers, especially 4, remain difficult to prepare and
are usually obtained in poor yields with significant impurities,
requiring cumbersome chromatographic purification steps.
Luigia Capelli, Paola Manini, Alessandro Pezzella,*
Alessandra Napolitano, and Marco d’Ischia
Department of Organic Chemistry and Biochemistry,
University of Naples Federico II, Complesso Universitario
Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
Received June 12, 2009
A unified convenient strategy for the synthesis of 5,6-
dihydroxyindole-derived 2,70-, 2,20-, and 2,30-biindolyls is
reported, which is based on proper manipulation of key
o-ethynylaniline precursors. By the same methodology 5,6-
diacetoxy-7-iodoindole can also be obtained in good yield.
5,6-Dihydroxyindoles are naturally occurring, catechol-
containing heterocyclic compounds1 which provide the fun-
damental monomer precursors of eumelanins, the character-
istic black insoluble biopolymers found in human skin, hair,
and eyes.2 Chemical or enzymatic oxidation converts the
parent 5,6-dihydroxyindole (1) into black insoluble materials
virtually indistiguishable from natural pigments. This po-
lymerization reaction proceeds through oligomer intermedi-
ates that can be populated at the dimer level by up to four
main biindolyls, 2-5, sharing 2-linked indole units as a
common feature.1,3 This peculiar signature of the oxidation
behavior of 1 is lost in part when the dimers are oxidatively
(5) (a) Pezzella, A.; Panzella, L.; Crescenzi, O.; Napolitano, A.; Navaratman,
S.; Edge, R.; Land, E. J.; Barone, V.; d’Ischia, M. J. Am. Chem. Soc. 2006, 128,
15490–11221. (b) d’Ischia, M.; Crescenzi, O.; Pezzella, A.; Arzillo, M.; Panzella,
L.; Napolitano, A.; Barone, V. Photochem. Photobiol. 2008, 84, 600–607.
(6) d’Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T.
Angew. Chem., Int. Ed. 2009, 48, 3914–3921.
(7) Meredith, P.; Sarna, T. Pigment Cell Res. 2006, 19, 572–594.
(8) Bothma, J. P.; de Boor, J.; Divakar, U.; Schwenu, P. E.; Meredith, P.
Adv. Mater. 2008, 20, 3539.
(9) (a) Chang, K.-J.; Chae, M. K.; Lee, C.; Lee, J.-Y.; Jeong, K.-S.
Tetrahedron Lett. 2006, 47, 6385–6388. (b) Lin, C.-I.; Selvi, S.; Fang,
J.-M.; Chou, P.-T.; Lai, C.-H.; Cheng, Y.-M. J. Org. Chem. 2007, 72,
3537–3542. (c) Chang, K.-J.; Moon, D.; Lah, M. S.; Jeong, K.-S. Angew.
Chem., Int. Ed. 2005, 44, 7926–7929.
(10) Panzella, L.; Pezzella, A.; Arzillo, M.; Manini, P.; Napolitano, A.;
d’Ischia, M. Tetrahedron 2009, 65, 2032–2036.
(11) Beer, R. J. S.; Clarke, K.; Khorana, H. G.; Robertson, A. Nature
1948, 161, 525.
(12) (a) d'Ischia, M.; Napolitano, A.; Pezzella, A. In Comprehensive Hetero-
cyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor,
R. J. K., Eds.; Elsevier Ltd.: Oxford, UK, 2008. (b) Bergman, J.; Janosik, T. In
Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A.,
Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier Ltd.: Oxford, UK, 2008.
(c) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873–2920.
(13) Mee, S. P. H.; Lee, V.; Baldwin, J. E.; Cowley, A. Tetrahedron 2004,
60, 3695–3712.
(1) d’Ischia, M.; Napolitano, A.; Pezzella, A.; Land, E. J.; Ramsden,
C. A.; Riley, P. A. Adv. Heterocycl. Chem. 2005, 89, 1–63.
(2) (a) Prota, G. Melanins and Melanogenesis; Academic Press: San Diego,
CA, 1992. (b) The Pigmentary System: Physiology and Pathophysiology;
Nordlund, J. J., Boissy, R. E., Hearing, V. J., King, R. A., Oetting, W. S., Ortonne,
J. P., Eds.; Blackwell Publishing: Malden, MA, 2006.
(3) (a) d’Ischia, M.; Napolitano, A.; Tsiakas, K.; Prota, G. Tetrahedron
1990, 46, 5789–5796. (b) Napolitano, A.; Corradini, M. G.; Prota, G.
Tetrahedron Lett. 1985, 26, 2805–2808. (c) Manini, P.; d’Ischia, M.; Milosa,
M.; Prota, G. J. Org. Chem. 1998, 63, 7002–7008.
(4) (a) Panzella, L.; Pezzella, A.; Napolitano, A.; d’Ischia, M. Org. Lett.
2007, 9, 1411–1414. (b) Pezzella, A.; Panzella, L.; Natangelo, A.; Arzillo, M.;
Napolitano, A.; d’Ischia, M. J. Org. Chem. 2007, 72, 9225–9230.
DOI: 10.1021/jo901259s
r
Published on Web 08/11/2009
J. Org. Chem. 2009, 74, 7191–7194 7191
2009 American Chemical Society