2502
H. Xu, J.-J. Wang / Bioorg. Med. Chem. Lett. 20 (2010) 2500–2502
1H, H-4), 2.71 (m, 3H, H-2, 3, 4); MS (EI), m/z (%) 398.1 (M+, 100). Compound 4:
introduced on the 40-benzenesulfonate0s ring of 4-deoxypodo-
phyllotoxin, the corresponding insecticidal activity was decreased
as compared to 3 (5e 25.0%, 5f 21.4%, and 5g 35.7% vs 3 39.3%). (3)
Compound 5a bearing the nitro group at the meta position on the
40-benzenesulfonate0s ring of 4-deoxypodophyllotoxin, whose cor-
rected mortality rate against M. separata after 30 d was 60.7%,
showed the most promising and best insecticidal activity as com-
pared to 3 (39.3%) and toosendanin (46.4%). Especially compound
5a exhibited the same potent insecticidal activity as 40-deoxypodo-
phyllotoxin nicotinate or isonicotinate.9
mp 246–248 °C; ½a D20
ꢀ
= ꢁ130 (c 0.4 mg/mL, CHCl3); IR cmꢁ1: 2899, 2824, 1757,
1608, 1478, 1458, 1214, 1105, 922, 769; 1H NMR (400 MHz, CDCl3) d: 6.66 (s,
1H, H-5), 6.51 (s, 1H, H-8), 6.35 (s, 2H, H-20, 60), 5.92 (m, 2H, OCH2O), 5.39 (s,
1H, 40-OH), 4.59 (d, J = 2.4 Hz, 1H, H-1), 4.42 (m, 1H, H-11), 3.88 (m, 1H, H-11),
3.78 (s, 6H, 30,50-OCH3), 3.05 (m, 1H, H-4), 2.71 (m, 3H, H-2, 3, 4); MS (EI), m/z
(%) 383.9 (M+, 100).
11. Spectral data for 5a: yellow solid, mp 115 °C; ½a D20
= ꢁ48 (c 4 mg/mL, CHCl3); IR
ꢀ
cmꢁ1: 2916, 2845, 1769, 1598, 1483, 1462, 1378, 1225, 1126, 929, 705; 1H
NMR (400 MHz, CDCl3) d: 8.89 (s, 1H, H-200), 8.48–8.51 (m, 1H, H-600), 8.30–8.33
(m, 1H, H-400), 7.74 (t, J = 8.0 Hz, 1H, H-500), 6.67 (s, 1H, H-5), 6.50 (s, 1H, H-8),
6.36 (s, 2H, H-20, 60), 5.94 (dd, J = 1.2, 10 Hz, 2H, OCH2O), 4.61 (d, J = 4.8 Hz, 1H,
H-1), 4.46–4.50 (m, 1H, H-11), 3.90–3.95 (m, 1H, H-11), 3.61 (s, 6H, 30,50-
OCH3), 3.05–3.10 (m, 1H, H-4), 2.74–2.81(m, 3H, H-2, 3, 4); HRMS: Calcd for
C27H27N2O11S ([M+NH4]+), 587.1330; found, 587.1326. 5b: white solid, mp
In conclusion, eight novel 40-substituted benzenesulfonate
derivatives of 4-deoxypodophyllotoxin were synthesized and pre-
liminarily tested against the pre-third-instar larvae of M. separata
Walker in vivo at the concentration of 1 mg/mL. Among all of the
tested compounds, analogs 5a, 5c, 5d, and 5h showed the higher
insecticidal activity than 4-deoxypodophyllotoxin. Especially 5a
exhibited the most potent insecticidal activity compared with too-
sendanin, a commercial insecticide derived from M. azedarach.
248–250 °C; ½a 2D0
ꢀ
= ꢁ70 (c 5.3 mg/mL, CHCl3); IR cmꢁ1: 2881, 2838, 1765,
1596, 1484, 1460, 1373, 1227, 1129, 932, 755, 733; 1H NMR (400 MHz, CDCl3)
d: 7.95 (d, J = 8.8 Hz, 2H, H-200, 600), 7.61 (t, J = 8.0 Hz, 1H, H-400), 7.50 (t,
J = 8.0 Hz, 2H, H-300, 500), 6.66 (s, 1H, H-5), 6.50 (s, 1H, H-8), 6.32 (s, 2H, H-20, 60),
5.93 (dd, J = 1.2, 9.6 Hz, 2H, OCH2O), 4.59 (d, J = 4.8 Hz, 1H, H-1), 4.45–4.49 (m,
1H, H-11), 3.90–3.94 (m, 1H, H-11), 3.53 (s, 6H, 30,50-OCH3), 3.04–3.09 (m, 1H,
H-4), 2.68–2.80 (m, 3H, H-2, 3, 4); MS (ESI-TRAP), m/z (%) 525 ([M+1]+, 100);
HRMS: Calcd for C27H28NO9S ([M+NH4]+), 542.1479; found, 542.1469. 5c:
white solid, mp 94–96 °C; ½a D20
ꢀ
= ꢁ47 (c 3.6 mg/mL, CHCl3); IR cmꢁ1: 2915,
2838, 1767, 1595, 1483, 1460, 1367, 1225, 1127, 929, 755; 1H NMR (400 MHz,
CDCl3) d: 7.87 (d, J = 8.8 Hz, 2H, H-200, 600), 6.96 (d, J = 8.8 Hz, 2H, H-300, 500), 6.66
(s, 1H, H-5), 6.50 (s, 1H, H-8), 6.32 (s, 2H, H-20, 60), 5.93 (s, 2H, OCH2O), 4.59 (d,
J = 4.0 Hz, 1H, H-1), 4.45–4.49 (m, 1H, H-11), 3.88–3.94 (m, 1H, H-11), 3.88 (s,
3H, C6H4OCH3), 3.57 (s, 6H, 30,50-OCH3), 3.04–3.09 (m, 1H, H-4), 2.72–2.80 (m,
3H, H-2, 3, 4); MS (ESI-TRAP), m/z (%) 555 ([M+1]+, 100); HRMS: Calcd for
C28H30NO10S ([M+NH4]+), 572.1585; found, 572.1572. 5d: yellow solid, mp 97–
Acknowledgments
This work was financially supported by the Program for New
Century Excellent University Talents, State Education Ministry of
China (NCET-06-0868), the Key Project of Chinese Ministry of Edu-
cation (No. 107105), and the Research Fund for the Doctoral Pro-
gram of Higher Education of China (No. 20070712025).
99 °C; ½a 2D0
ꢀ
= ꢁ58 (c 7 mg/mL, CHCl3); IR cmꢁ1: 2903, 2844, 1769, 1597, 1483,
1462, 1379, 1225, 1127, 929, 752, 709; 1H NMR (400 MHz, CDCl3) d: 8.48 (d,
J = 2.4 Hz, 1H, H-200), 8.09 (dd, J = 2.0, 8.4 Hz, 1H, H-500), 7.73 (d, J = 8.8 Hz, 1H,
H-600), 6.67 (s, 1H, H-5), 6.50 (s, 1H, H-8), 6.36 (s, 2H, H-20, 60), 5.94 (dd, J = 1.2,
10 Hz, 2H, OCH2O), 4.61 (d, J = 4.8 Hz, 1H, H-1), 4.46–4.50 (m, 1H, H-11), 3.91–
3.95 (m, 1H, H-11), 3.62 (s, 6H, 30,50-OCH3), 3.05–3.11 (m, 1H, H-4), 2.65–2.81
(m, 3H, H-2, 3, 4); MS (ESI-TRAP), m/z (%) 604 ([M+1]+, 93); HRMS: Calcd for
C27H26N2O11SCl ([M+NH4]+), 621.0940; found, 621.0943. 5e: white solid, mp
References and notes
1. Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327.
2. Issell, B. F. Cancer Chemother. Pharmacol. 1982, 7, 73.
114–116 °C; ½a 2D0
ꢀ
= ꢁ57 (c 3.9 mg/mL, CHCl3); IR cmꢁ1: 2909, 2831, 1769,
1597, 1482, 1461, 1374, 1225, 1127, 930, 758; 1H NMR (400 MHz, CDCl3) d:
7.88 (d, J = 7.2 Hz, 2H, H-200, 600), 7.49 (d, J = 8.8 Hz, 2H, H-300, 500), 6.66 (s, 1H, H-
5), 6.49 (s, 1H, H-8), 6.33 (s, 2H, H-20, 60), 5.93 (dd, J = 1.2, 9.6 Hz, 2H, OCH2O),
4.59 (d, J = 4.8 Hz, 1H, H-1), 4.45–4.49 (m, 1H, H-11), 3.90–395 (m, 1H, H-11),
3.56 (s, 6H, 30,50-OCH3), 3.04–3.09 (m, 1H, H-4), 2.65–2.80 (m, 3H, H-2, 3, 4);
MS (ESI-TRAP), m/z (%) 559 ([M+1]+, 61); HRMS: Calcd for C27H27NO9SCl
([M+NH4]+), 576.1090; found, 576.1087. 5f: white solid, mp 97–99 °C;
3. (a) Lee, C. T. L.; Lin, V. C. K.; Zhang, S. X.; Zhu, X. K.; VanVliet, D.; Hu, H.; Beers, S.
A.; Wang, Z. Q.; Cosentino, L. M.; Morris-Natschke, S. L.; Lee, K. H. Bioorg. Med.
Chem. Lett. 1997, 7, 2897; (b) Zhu, X. K.; Guan, J.; Xiao, Z. Y.; Cosentino, L. M.;
Lee, K. H. Bioorg. Med. Chem. 2004, 12, 4267.
4. Kozawa, M.; Baba, K.; Matsuyama, Y.; Kido, T.; Sakai, M.; Takemoto, T. Chem.
Pharm. Bull. 1982, 30, 2885.
5. Inamori, Y.; Kubo, M.; Kato, Y.; Tsujibo, H.; Sakai, M.; Kozawa, M. Chem. Pharm.
Bull. 1986, 34, 2542.
6. Miyazawa, M.; Fukuyama, M.; Yoshio, K.; Kato, T.; Ishikawa, Y. J. Agric. Food
Chem. 1999, 47, 5108.
½
a 2D0
ꢀ
= ꢁ50 (c 4.2 mg/mL, CHCl3); IR cmꢁ1: 2920, 2838, 1769, 1596, 1483,
1460, 1368, 1225, 1127, 929, 755; 1H NMR (400 MHz, CDCl3) d: 7.83 (d,
J = 8.4 Hz, 2H, H-200, 600), 7.30 (d, J = 8.0 Hz, 2H, H-300, 500), 6.66 (s, 1H, H-5), 6.50
(s, 1H, H-8), 6.32 (s, 2H, H-20, 60), 5.93 (dd, J = 1.2, 9.2 Hz, 2H, OCH2O), 4.59 (d,
J = 4.8 Hz, 1H, H-1), 4.45–4.49 (m, 1H, H–11), 3.89–3.94 (m, 1H, H-11), 3.55 (s,
6H, 30,50-OCH3), 3.04–3.09 (m, 1H, H-4), 2.66–2.80 (m, 3H, H-2, 3, 4), 2.45 (s,
3H, C6H4CH3); MS (ESI-TRAP), m/z (%) 539 ([M+1]+, 100); HRMS: Calcd for
C28H30NO9S ([M+NH4]+), 556.1636; found, 556.1644. 5g: white solid, mp 106–
7. Xu, H.; Zhang, L.; Su, B. F.; Zhang, X.; Tian, X. Heterocycles 2009, 77, 293.
8. Xu, H.; Xiao, X. Bioorg. Med. Chem. Lett. 2009, 19, 5415.
9. Xu, H.; Wang, J. J.; Sun, H. J.; Lv, M.; Tian, X.; Yao, X. J.; Zhang, X. J. Agric. Food
Chem. 2009, 57, 7919.
10. The representative procedure for the synthesis of compound 4: A mixture of 10%
palladium/carbon (12.0 g) and podophyllotoxin (1, 16.0 g, 38.6 mmol) in acetic
acid solution (150 mL) was stirred at 95 °C under 2 atm of hydrogen for 5 h.
After filtration to remove the catalyst and evaporation of the solvent, the
residue was purified by silica gel column chromatography to give the crude
product, which was further purified by recrystallization from methanol to
afford 9.8 g (66%) of 3 as a white solid. Then compound 3 (2 g, 50.2 mmol) was
suspended in 1,2-dichloroethane (25 mL) and diethyl ether (2.5 mL) at 0 °C. A
flow of dry hydrobromic acid was passed in the above solution. When the
reaction was complete according to TLC analysis, water (25 mL), acetone
(25 mL) and a little amount of BaCO3 were added to the reaction mixture,
which continued to stir for 0.5 h and extracted by EtOAc. Subsequently, the
combined organic phase was washed by brine, dried over anhydrous Na2SO4,
filtered, concentrated and purified by silica gel column chromatography to give
107 °C; ½a 2D0
ꢀ
= ꢁ60 (c 4.1 mg/mL, CHCl3); IR cmꢁ1: 2917, 1770, 1596, 1483,
1460, 1369, 1225, 1127, 929, 755; 1H NMR (400 MHz, CDCl3) d: 7.85 (d,
J = 8.4 Hz, 2H, H-200, 600), 7.33 (d, J = 8.4 Hz, 2H, H-300, 500), 6.66 (s, 1H, H-5), 6.50
(s, 1H, H-8), 6.32 (s, 2H, H-20, 60), 5.93 (dd, J = 1.2, 9.2 Hz, 2H, OCH2O), 4.59 (d,
J = 4.8 Hz, 1H, H-1), 4.45–4.49 (m, 1H, H-11), 3.90–3.94 (m, 1H, H-11), 3.54 (s,
6H, 30,50-OCH3), 3.04–3.09 (m, 1H, H-4), 2.69–2.80 (m, 5H, H-2, 3, 4,
C6H4CH2CH3), 1.25 (t, J = 7.6 Hz, 3H, C6H4CH2CH3); MS (ESI-TRAP), m/z (%)
553 ([M+1]+, 100); HRMS: Calcd for C29H32NO9S ([M+NH4]+), 570.1792; found,
570.1797. 5h: white solid, mp 96–98 °C; ½a D20
= ꢁ53 (c 3.6 mg/mL, CHCl3); IR
ꢀ
cmꢁ1: 2918, 2854, 1769, 1597, 1483, 1462, 1373, 1225, 1127, 930, 745; 1H
NMR (400 MHz, CDCl3) d: 7.80 (d, J = 8.4 Hz, 2H, H-200, 600), 7.49 (d, J = 8.8 Hz,
2H, H-300, 500), 6.66 (s, 1H, H-5), 6.49 (s, 1H, H-8), 6.32 (s, 2H, H-20, 60), 5.93 (dd,
J = 1.2, 9.6 Hz, 2H, OCH2O), 4.59 (d, J = 4.8 Hz, 1H, H-1), 4.45–4.49 (m, 1H, H-
11), 3.90–3.94 (m, 1H, H-11), 3.56 (s, 6H, 30,50-OCH3), 3.04–3.09 (m, 1H, H-4),
2.65–2.80 (m, 3H, H-2, 3, 4); MS (ESI-TRAP), m/z (%) 603 ([M+1]+, 100); HRMS:
Calcd for C27H27NO9SBr ([M+NH4]+), 620.0584; found, 620.0578.
1.16 g (60%) of 4 as a khaki solid. Compound 3: mp 165–167 °C; ½a D20
= ꢁ116 (c
ꢀ
1 mg/mL, CHCl3); IR cmꢁ1: 2892, 2831, 1763, 1587, 1482, 1457, 1223, 1120,
925, 768; 1H NMR (400 MHz, CDCl3) d: 6.67 (s, 1H, H-5), 6.52 (s, 1H, H-8), 6.34
(s, 2H, H-20, 60), 5.93 (d, J = 8.0 Hz, 2H, OCH2O), 4.60 (s, 1H, H-1), 4.43 (m, 1H, H-
11), 3.89 (m, 1H, H-11), 3.79 (s, 3H, 40-OCH3), 3.75 (s, 6H, 30,50-OCH3), 3.06 (m,