sis11 generates 3-substituted oxindoles from acyclic reaction
precursors, though elevated reaction temperatures are re-
quired to promote this transformation. A number of related
3-oxa-4-aza-[3,3] sigmatropic rearrangements have been
developed that require the formation of a metal enolate or
forcing reaction conditions to promote the rearrangement and
generate racemic oxindoles.12 An alternative hetero-Claisen-
type process,13 first investigated by Staudinger,14 and
subsequently by Lippman15 and Taylor,16 employs the
reaction of phenylnitrone with 2 equiv of diphenylketene,
generating 3,3-diphenyloxindole after methanolysis. Only
limited use of this transformation has been made despite its
potential synthetic versatility,17 and to the best of our
knowledge, no examples of this process using unsymmetrical
disubstituted ketenes or asymmetric versions of this reaction
have been demonstrated. Herein, we detail the development
of an efficient, metal-free, asymmetric variant of this reaction
that generates 3-alkyl-3-aryloxindoles with high enantiopurity
(up to 90% ee) (Figure 1).
Figure 1. Proposed synthesis of 3-alkyl-3-aryloxindoles (Xc )
stereodirecting group).
Figure 2. Synthesis of (()-3-alkyl-3-aryloxindoles.
Initial studies focused upon the demonstration of this
process in the racemic series. In an optimized procedure,
treatment of nitrone 1 with methylphenylketene gave (()-
3-methyl-3-phenyloxindole 5 and 4-bromobenzaldehyde
directly after workup, furnishing (()-5 in 85% isolated yield.
This reaction proved general, tolerating a range of C(2)-aryl
and C(2)-alkyl substituents within the ketene component,
generating (()-oxindoles 6-12 in excellent isolated yield
(83-90%). A range of N-aryl nitrones are also tolerated, with
4- or 2-substituted N-aryl nitrones 2-4 giving the (()-5- or
(()-7-substituted oxindoles 13-15, respectively, in excellent
yield (87-93%) (Figure 2).
With an efficient synthetic protocol developed to generate
(()-3-alkyl-3-aryloxindoles, the ability of a chiral nitrone
to induce asymmetry in this transformation was investigated.
Treatment of Garner’s aldehyde18 with phenylhydroxylamine
and MgSO4 gave (R,Z)-N-phenylnitrone 16 as a bench stable
crystalline solid as a single diastereoisomer in 87% yield.
The (Z)-configuration within 16 was confirmed by single-
crystal X-ray diffraction (Scheme 1).19
Treatment of nitrone 16 with methylphenylketene (1 equiv)
followed by aqueous workup afforded oxindole (S)-5 in 85%
yield and 87% ee20 and recovered Garner’s aldehyde in 80%
(10) For representative examples, see: Kawasaki, T.; Shinada, M.;
Kamimura, D.; Ohzuno, M.; Ogawa, A. Chem. Commun. 2006, 420.
Kawasaki, T.; Ogawa, A.; Terashima, R.; Saheki, T.; Ban, N.; Sekiguchi,
H.; Sakaguchi, K-E. M. J. Org. Chem. 2005, 70, 2957. Kawasaki, T.;
Terashima, R.; Sakaguchi, K.; Sekiguchi, H.; Sakamoto, M. Tetrahedron
Lett.1996,42,7525. ForarecentcatalyticasymmetricMeerwein-Eschenmoser
Claisen rearrangement, see: Linton, E. C.; Kozlowski, M. C. J. Am. Chem.
Soc. 2008, 130, 16162.
(13) For a review of related hetero [3,3]-sigmatropic rearrangements,
see: Blechert, S. Synthesis 1989, 71.
(14) Staudinger, H.; Miescher, K. HelV. Chim. Acta 1919, 2, 554.
(15) Hassall, C. H.; Lippmann, A. E. J. Chem. Soc. 1953, 1059.
(16) Hafiz, M.; Taylor, G. A. J. Chem. Soc., Perkin Trans. 1 1980, 1700.
Stokes, D. P.; Taylor, G. A. J. Chem. Soc. C 1971, 2334. Pratt, R. N.;
Stokes, D. P.; Taylor, G. A. J. Chem. Soc. C. 1968, 1653.
(11) Brunner, K. Monatsh. Chem. 1896, 17, 479. Endler, A. S.; Beeker,
E. I. Org. Synth. 1957, 37, 60. Wolff, J.; Taddei, M. Tetrahedron 1996, 42,
4267.
(17) For examples of related reactions that generate achiral oxindoles,
see: Takaoka, K.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. 1999, 40, 3017.
Baker, A. D.; Wong, D.; Lo, S.; Bloch, M.; Horozoglu, G.; Goldman, G. L.;
Engel, R.; Liotta, D. C. Tetrahedron Lett. 1978, 19, 215. Calder, I. C.;
Williams, P. J. J. Chem Soc., Chem. Commun. 1972, 891.
(12) For representative examples, see: Coates, R. M.; Said, I. M. J. Am.
Chem. Soc. 1977, 99, 2355. Blechert, S. Tetrahedron Lett. 1984, 25, 1547.
Uchida, T.; Endo, Y.; Hizatate, S.; Shudo, K. Chem. Pharm. Bull. 1994,
42, 419. Endo, Y.; Uchida, T.; Hizatate, S.; Shudo, K. Synthesis 1994, 1096.
Almeida, P. S.; Prabhakar, S.; Lobo, A. M.; Marcelo-Curto, M. J.
Tetrahedron Lett. 1991, 32, 2671. Lobo, A. M.; Prabhakar, S. Pure Appl.
Chem. 1997, 69, 547. Santos, P. F.; Almeida, P. S.; Lobo, A. M.; Prabhakar,
S. Heterocycles 2001, 55, 1029. Mao, Z.; Baldwin, S. W. Org. Lett. 2004,
6, 2425.
(18) Garner, P.; Park, J. M. Org. Synth. 1992, 70, 18. Garner, P.;
Ramakanth, S. J. Org. Chem. 1986, 51, 2609.
(19) Crystallographic data for compound 16 has been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication
number CCDC 737167. These data can be obtained free of charge from
Org. Lett., Vol. 11, No. 17, 2009
3859