Narasimhan et al.
JOCArticle
FIGURE 1. Protons are transformed from achiral to prochiral by
making a planar (A) aromatic moiety nonplanar (B). Such a
nonplanar aromatic moiety can be introduced by a bowl-shaped
trioxatricornan (C). Substituting the prochiral protons with a
substitutent renders the molecule chiral.
FIGURE 2. Potential intramolecular interactions for trioxatricor-
nan core substituted with three amino acid residues at the
C3-symmetric positions.
describe the synthesis that reverses the statistically con-
trolled regiochemistry resulting in diastereomers with a
C3-symmetric core. The resolution, absolute configura-
tion determination, and folding characterization for
the diastereomers having a C3-symmetric core are also
elucidated.
A wide range of non-natural molecules have been
demonstrated to fold into preferred structures among a
large ensemble of possible conformations. Examples in-
clude β-peptide2,4,6 and m-phenylene ethynylene oligo-
mers.4,7-9 Other folded structures include synthetic
oligomers,1-4,10-12 synthetic R-peptide sequences,13-19
artificial proteins,20-28 nucleic acids,29-32 and helical
polymers.33-38 Most of these folding molecules involve
stereogenic centers on a linear polymer or oligomer. The
use of highly symmetric, but chiral moieties to build
molecules that fold into preferred conformations has
not been extensively studied.39 Many C3 symmetric, but
achiral molecules have been explored for their utility
toward recognition,40,41 molecular folding,42 and cataly-
sis.43,44 To make use of the C3 symmetry for designing
functions, Anslyn and co-workers have built C3v sym-
metric receptors for facial selectivity40 and for selective
binding of phosphate ions.41
We are interested in discovering new folding motifs and self-
assembly from non-natural structures,45 and exploring the
biocompatibility and new functions46 from these unique struc-
tures, as well as molecules with exotic symmetries.47-49 Here,
we explore using a chiral C3-symmetric core50-55 and intramo-
lecular interactions to induce a folded structure. We reason that
while protons on a planar aromatic ring are, in general, not
prochiral (Figure 1A), protons on a nonplanar aromatic ring
can be prochiral (Figure 1B). To study the effect of the chiral
microenvironment of a nonplanar aromatic on molecular
conformation and folding, we consider a bowl-shaped core
(6) Petersson, E. J.; Schepartz, A. J. Am. Chem. Soc. 2008, 130, 821–823.
(7) Elliott, E. L.; Ray, C. R.; Kraft, S.; Atkins, J. R.; Moore, J. S. J. Org.
Chem. 2006, 71, 5282–5290.
(8) Hartley, C. S.; Elliott, E. L.; Moore, J. S. J. Am. Chem. Soc. 2007, 129,
4512–4513.
(9) Kelley, R. F.; Rybtchinski, B.; Stone, M. T.; Moore, J. S.; Wasielewski,
M. R. J. Am. Chem. Soc. 2007, 129, 4114–4115.
(10) Li, X.; Yang, D. Chem. Commun. 2006, 3367–3379.
(11) Yang, D.; Zhang, D.-W.; Hao, Y.; Wu, Y.-D.; Luo, S.-W.; Zhu,
N.-Y. Angew. Chem., Int. Ed. 2004, 43, 6719–6722.
(12) Horne, W. S.; Gellman, S. H. Acc. Chem. Res. 2008, 41, 1399–1408.
(13) Balaram, P. Curr. Opin. Struct. Biol. 1992, 2, 845–851.
(14) Betz, S. F.; Bryson, J. W.; DeGrado, W. F. Curr. Opin. Struct. Biol.
1995, 5, 457–463.
(15) DeGrado, W. F.; Summa, C. M.; Pavone, V.; Nastri, F.; Lombardi,
A. Annu. Rev. Biochem. 1999, 68, 779–819.
(16) Karle, I. L.; Balaram, P. Biochemistry 1990, 29, 6747–6756.
(17) Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. Rev.
2001, 101, 3131–3152.
(18) Singh, Y.; Dolphin, G. T.; Razkin, J.; Dumy, P. ChemBioChem 2006,
7, 1298–1314.
(19) DeGrado, W. F. Adv. Protein Chem. 1988, 39, 51–124.
(20) Ansari, A. Z.; Mapp, A. K.; Nguyen, D. H.; Dervan, P. B.; Ptashne,
M. Chem. Biol. 2001, 8, 583–592.
(21) Kirby, A. J. Angew. Chem., Int. Ed. 1996, 35, 707–724.
(22) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303–305.
(23) Mutter, M. Angew. Chem. 1985, 97, 639–654.
(37) Nolte, R. J. M. Chem. Soc. Rev. 1994, 23, 11–19.
(38) Yashima, E.; Maeda, K. Foldamers 2007, 331–366.
(39) Rump, E. T.; Rijkers, D. T. S.; Hilbers, H. W.; de Groot, P. G.;
Liskamp, R. M. J. Chem.;Eur. J. 2002, 8, 4613–4621.
(40) Hennrich, G.; Lynch, V. M.; Anslyn, E. V. Chem.;Eur. J. 2002, 8,
2274–2278.
(41) Tobey, S. L.; Jones, B. D.; Anslyn, E. V. J. Am. Chem. Soc. 2003, 125,
4026–4027.
(42) Kwak, J.; De Capua, A.; Locardi, E.; Goodman, M. J. Am. Chem.
Soc. 2002, 124, 14085–14091.
(24) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997,
277, 1793–1796.
(25) Patch, J. A.; Barron, A. E. Curr. Opin. Chem. Biol. 2002, 6, 872–877.
(26) Qiu, J. X.; Petersson, E. J.; Matthews, E. E.; Schepartz, A. J. Am.
Chem. Soc. 2006, 128, 11338–11339.
(43) Kemp, D. S.; Petrakis, K. S. J. Org. Chem. 1981, 46, 5140–5143.
(44) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Science
2006, 312, 1941–1943.
(45) Han, Y.; Cheng, K.; Simon, K. A.; Lan, Y.; Sejwal, P.; Luk, Y.-Y. J.
Am. Chem. Soc. 2006, 128, 13913–13920.
(27) Razeghifard, R.; Wallace, B. B.; Pace, R. J.; Wydrzynski, T. Curr.
Protein Pept. Sci. 2007, 8, 3–18.
(46) Sejwal, P.; Han, Y.; Shah, A.; Luk, Y.-Y. Org. Lett. 2007, 9, 4897–
4900.
(28) Wu, C. W.; Seurynck, S. L.; Lee, K. Y. C.; Barron, A. E. Chem. Biol.
2003, 10, 1057–1063.
(47) Narasimhan, S. K.; Lu, X.; Luk, Y.-Y. Chirality 2008, 20, 878–884.
(48) Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502–518.
(49) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972–983.
(50) Canary, J. W.; Allen, C. S.; Castagnetto, J. M.; Wang, Y. J. Am.
Chem. Soc. 1995, 117, 8484–8485.
(51) Gibson, S. E.; Castaldi, M. P. Angew. Chem., Int. Ed. 2006, 45, 4718–
4720.
(52) Moberg, C. Angew. Chem., Int. Ed. 1998, 37, 248–268.
(53) Bolm, C.; Meyer, N.; Raabe, G.; Weyhermuller, T.; Bothe, E. Chem.
Commun. 2000, 2435–2436.
(29) Nielsen, P. E. Mol. Biotechnol. 2004, 26, 233–248.
(30) Rothemund, P. W. K. Nature 2006, 440, 297–302.
(31) Chworos, A.; Jaeger, L. Foldamers 2007, 291–329.
(32) LaBean, T. H.; Yan, H.; Kopatsch, J.; Liu, F.; Winfree, E.; Reif, J.
H.; Seeman, N. C. J. Am. Chem. Soc. 2000, 122, 1848–1860.
(33) Amabilino, D. B.; Serrano, J.-L.; Sierra, T.; Veciana, J. J. Polym.
Sci., Part A: Polym. Chem. 2006, 44, 3161–3174.
(34) Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.;
Lifson, S. Science 1995, 268, 1860–1866.
(35) Maeda, K.; Yashima, E. Top. Curr. Chem. 2006, 265, 47–88.
(36) Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013–4038.
(54) Bolm, C.; Davis, W. M.; Halterman, R. L.; Sharpless, K. B. Angew.
Chem. 1988, 100, 882–883.
(55) Bolm, C.; Sharpless, K. B. Tetrahedron Lett. 1988, 29, 5101–5104.
7024 J. Org. Chem. Vol. 74, No. 18, 2009