◦
˚
host–guest properties with other anions and also to synthesize
the macrocycles of varied size is in progress.
Table 4 Selected bond distances (A) and bond angles ( ) for 9
˚
Bond distances/A
Bond angles/◦
Acknowledgements
Au1–P1
Au1–P8
Au2–P2
Au2–P3
Au3–P4
Au3–P5
Au4–P6
Au4–P7
P1–N1
P1–N2
P2–N1
P2–N2
P3–N3
P3–N4
P4–N3
P4–N4
P5–N5
P5–N6
P6–N5
P6–N6
P7–N7
2.297(2)
2.293(2)
2.288(2)
2.273(2)
2.295(2)
2.305(2)
2.294(2)
2.280(2)
1.682(7)
1.680(6)
1.673(6)
1.680(7)
1.678(6)
1.682(6)
1.675(6)
1.686(5)
1.658(6)
1.679(6)
1.677(5)
1.675(6)
1.681(7)
1.682(5)
1.668(5)
1.690(7)
1.443(7)
1.429(6)
1.436(5)
1.437(5)
3.073(3)
3.006(3)
3.034(3)
3.100(3)
3.176(3)
P1–Au1–P8
P2–Au2–P3
P4–Au3–P5
P6–Au4–P7
N1–P1–N2
N1–P2–N2
P1–N1–P2
P1–N2–P2
N3–P3–N4
N3–P4–N4
P3–N3–P4
P3–N4–P4
N5–P5–N6
N5–P6–N6
P5–N5–P6
P5–N6–P6
N7–P7–N8
N7–P8–N8
P7–N7–P8
177.33(7)
175.99(7)
175.69(7)
175.75(7)
84.06(29)
84.33(29)
95.84(28)
95.67(28)
84.49(28)
84.48(28)
95.53(28)
94.99(27)
84.27(27)
83.80(27)
96.28(27)
95.57(28)
84.07(28)
84.22(28)
95.92(28)
95.08(27)
109.63
We are grateful to the Department of Science and Technology
(DST), New Delhi for funding through grant SR/S1/IC-02/007.
PC thanks CSIR for Research Fellowship. JTM thanks the
Louisiana Board of Regents and the Chemistry Department of
Tulane University for support of the X-ray laboratory.
References
1 (a) M. S. Balakrishna, D. J. Eisler and T. Chivers, Chem. Soc. Rev.,
2007, 36, 650–664; (b) P. Kommana and K. C. Kumara Swamy, Inorg.
Chem., 2000, 39, 4384–4385; (c) F. Garcia, J. M. Goodman, R. A.
Kowenicki, M. McPartlin, L. Riera, M. A. Silva, A. Wising and D. S.
Wright, Dalton Trans., 2005, 1764–1773; (d) A. Bashall, E. L. Doyle, C.
Tubb, S. J. Kidd, M. McPartlin, A. D. Woods and D. S. Wright, Chem.
Commun., 2001, 2542–2543; (e) P. Chandrasekaran, J. T. Mague and
M. S. Balakrishna, Inorg. Chem., 2009, 48, 1398–1406.
2 (a) M. Chakravarty, P. Kommana and K. C. Kumara Swamy, Chem.
Commun., 2005, 5396–5398; (b) J. K. Brask, T. Chivers, M. L. Krahn
and M. Parvez, Inorg. Chem., 1999, 38, 290–295; (c) D. Dou, E. N.
Duesler and R. T. Paine, Inorg. Chem., 1999, 38, 788–793; (d) F.
Garc´ıa, R. A. Kowenicki, I. Kuzu, L. Riera, M. McPartlin and
D. S. Wright, Dalton Trans., 2004, 2904–2909; (e) F. Dodds, F.
Garcia, R. A. Kowenicki, M. McPartlin, A. Steiner and D. S. Wright,
Chem. Commun., 2005, 3733–3735; (f) F. Dodds, F. Garcia, R. A.
Kowenicki, M. McPartlin, L. Riera, A. Steiner and D. S. Wright, Chem.
Commun., 2005, 5041–5043; (g) M. S. Balakrishna and J. T. Mague,
Organometallics, 2007, 26, 4677–4679.
P7–N8–P8
O17–Cl1–O18
O18–Cl1–O19
O19–Cl1–O20
O17–Cl1–O20
Au1–P1–O1
Au2–P2–O3
Au3–P4–O7
Au4–P7–O13
Au2 ◊ ◊ ◊ O18–Cl1
Au2 ◊ ◊ ◊ O19–Cl1
Au4 ◊ ◊ ◊ O17–Cl1
Au4 ◊ ◊ ◊ O20–Cl1
Au3 ◊ ◊ ◊ O20–Cl1
P7–N8
P8–N7
P8–N8
108.73
108.60
108.90
Cl1–O17
Cl1–O18
Cl1–O19
Cl1–O20
Au2 ◊ ◊ ◊ O18
Au2 ◊ ◊ ◊ O19
Au4 ◊ ◊ ◊ O17
Au4 ◊ ◊ ◊ O20
Au3 ◊ ◊ ◊ O20
114.55(20)
110.77(19)
118.19(23)
107.4(2)
101.47(9)
104.39(9)
104.47(9)
101.72(9)
113.39(9)
3 (a) E. L. Doyle, L. Riera and D. S. Wright, Eur. J. Inorg. Chem., 2003,
3279–3289; (b) Ke Zhang, J. Prabhavathy, John H. K. Yip, Lip Lin Koh,
Geok Kheng Tan and Jagadese J. Vittal, J. Am. Chem. Soc., 2003, 125,
8452–8453; (c) J. H. K. Yip and J. Prabhavathy, Angew. Chem., Int. Ed.,
2001, 40, 2159–2162.
Table 4. Another example of perchlorate ion encapsulation occurs
in the tri-gold macrocyclic complex [Au3(PanP)3](ClO4)3 (PanP =
9,10-bis(diphenylphosphino)anthracene)3b but here three of the
oxygen atoms of the encapsulated ion are directed towards the
centers of the anthracene moieties and the ion resides in the center
of the cavity. All four P2N2 rings are slightly puckered as seen
from the dihedral angles between the two PNN planes in each unit
(for P1P2 ring, 3.4(3)◦; P3P4 ring, 7.3(3)◦; P5P6 ring, 2.8(3)◦; P7P8
ring, 8.6(3)◦). The exocyclic phenyl substituents on phosphorus are
oriented in an exo–exo manner in the P1P2 and P5P6 positions,
whereas in the P3P4 and P7P8 positions they are arranged in an
exo–endo orientation.
`
4 (a) A. Bashall, A. D. Bond, E. L. Doyle, F. GarcIa, S. Kidd, G. T.
Lawson, M. C. Parry, M. McPartlin, A. D. Woods and D. S. Wright,
Chem.–Eur. J., 2002, 8, 3377–3385; (b) F. Garcia, J. M. Goodman, R. A.
Kowenicki, I. Kuzu, M. McPartlin, M. A. Silva, L. Riera, A. D. Woods
and D. S. Wright, Chem.–Eur. J., 2004, 10, 6066–6072.
5 (a) J. L. Sessler, P. A. Gale, W.-S. Cho, Anion Receptor Chemistry,
Royal Society of Chemistry, Cambridge 2006; (b) F. P. Schmidtchen
and M. Berger, Chem. Rev., 1997, 97, 1609–1646; (c) P. D. Beer and
P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486–516; (d) C. Suksai
and T. Tuntulani, Chem. Soc. Rev., 2003, 32, 192–202; (e) H. Maeda, Y.
Haketa and T. Nakanishi, J. Am. Chem. Soc., 2007, 129, 13661–13674.
6 (a) V. Amendola, M. Bonizzoni, D. Esteban-Gomez, L. Fabbrizzi,
M. Licchelli, F. Sancenon and A. Taglietti, Coord. Chem. Rev., 2006,
250, 1451–1470; (b) P. A. Gale, S. E. Garcia-Garrido and J. Garric,
Chem. Soc. Rev., 2008, 37, 151–190; (c) C. R. Bondy and S. J. Loeb,
Coord. Chem. Rev., 2003, 240, 77–99; (d) J. M. Llinares, D. Powell and
K. Bowman-James, Coord. Chem. Rev., 2003, 240, 57–75; (e) T. W.
Hudnall, Y.-M. Kim, M. Bebbington, D. Bourissou and F. P. Gabba¨ı,
J. Am. Chem. Soc., 2008, 130, 10890–10891; (f) T. J. Wedge and M. F.
Hawthorne, Coord. Chem. Rev., 2003, 240, 111–128.
7 (a) C. R. Rice, Coord. Chem. Rev., 2006, 250, 3190–3199; (b) P. D. Beer
and E. J. Hayes, Coord. Chem. Rev., 2003, 240, 167–189; (c) C. R. Bondy,
P. A. Gale and S. J. Loeb, J. Am. Chem. Soc., 2004, 126, 5030–5031.
8 (a) P. Chandrasekaran, J. T. Mague and M. S. Balakrishna,
Organometallics, 2005, 24, 3780–3783; (b) P. Chandrasekaran, J. T.
Mague and M. S. Balakrishna, Inorg. Chem., 2005, 44, 7925–7932; (c) P.
Chandrasekaran, J. T. Mague and M. S. Balakrishna, Inorg. Chem.,
2006, 45, 6678–6683; (d) P. Chandrasekaran, J. T. Mague and M. S.
Balakrishna, Dalton Trans., 2007, 2957–2962; (e) P. Chandrasekaran,
J. T. Mague, R. Venkateswaran and M. S. Balakrishna, Eur. J. Inorg.
Chem., 2007, 4988–4997; (f) P. Chandrasekaran, J. T. Mague and
M. S. Balakrishna, Polyhedron, 2008, 27, 80–86; (g) D. Suresh, M. S.
Balakrishna and J. T. Mague, Dalton Trans., 2008, 3272–3274; (h) D.
Suresh, M. S. Balakrishna and J. T. Mague, Dalton Trans., 2008, 2812–
2814; (i) M. S. Balakrishna, R. Venkateswaran and J. T. Mague, Inorg.
Conclusions
Mono and dinuclear gold(I) complexes of cyclodiphosphazanes
were selectively prepared by controlling the reaction stoichiometry.
CuBr and CuI act as efficient halogen exchange reagents for the
conversion of chloro derivatives of the dinuclear gold complex into
the corresponding bromo and iodo derivatives. The rigid planar
nature of the cyclodiphosphazane and linear di-coordination of
gold(I) center favours the formation of a tetranuclear metalla-
macrocycle, whereas tri- and/or tetracoordination of copper(I)
and silver(I) centers leads to the formation of one dimensional
metallopolymers. The tetranuclear gold macrocycle acts as a
host for the perchlorate anion with stabilization via Au ◊ ◊ ◊ O
interactions. This is a rare example of gold metalla-macrocycles
showing anion encapsulation. Further work to explore its
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 5478–5486 | 5485
©