range of 0–40 mM. It is therefore made clear that HOTs can be
conveniently detected at low concentration levels, with a
detection limit down to 4.9 ꢂ 10ꢀ7 M. It must be noted that
pH greatly affects the HOT-sensing response of 2 (Fig. S7 in
ESIw). Protonation of the o-hydroxyl Schiff base at low pH
leads to sharp decreases of its fluorescence quantum yield and
metal-binding affinity, while binding of hydroxide ions on the
boronic acid group occurs at basic pH. In accordance with
the binding and signaling mechanisms described above, the
fluorescence response of 2 is dramatically weakened in acidic
or basic solution. Therefore, high sensitivity in fluorometric
determination of HOTs is conditioned at near neutral pH.
The performance of HOT sensing was further evaluated in
the coexistence of other metal species (Fig. 4). The presence of
alkali or alkali-earth metal ions at high concentration
(50 equiv. tin) caused no obvious interference. Absorption
spectral studies indicated the binding affinity of the chromogenic
o-hydroxyl Schiff base moiety towards transition metals such
as Cr3+, Fe3+, Cu2+ and other organotins (Fig. S8 in ESIw),
although this was not reported by fluorescence spectral
changes in 2. This explains the puny drifts of the HOT-sensing
signal of 2 in the presence of these interfering species. It
was observed that fluorescence responses resulting from the
addition of these interfering species followed by the addition
of BuSn(OH)2Cl to 2 were similar to those obtained in a
reverse way. These results indicate that the binding affinity of
HOT is higher than that of the investigated interfering species,
ensuring the high selectivity of the designed HOT receptor.
Standard addition methods confirmed that HOTs in synthetic
samples could be determined with satisfactory recoveries
(96–105%) at mM concentration level.
receptor nicely combines the binding character of an o-hydroxyl
Schiff base for the transition metal and boronic acid for the
vicinal diol. To the best of our knowledge, this is the first
example of a fluorescent receptor for hydroxylated metal
species. We also demonstrated that boronic acid acted as an
efficient receptor group for metal-centered diols. This may
lead to important applications of boronic acid in molecular
recognition in further studies.
This work was supported by the National Natural Science
Foundation of China (No. 20705029 and 20835005),
the Natural Science Foundation of Fujian Province
(No. A0610028) and the Science & Technology Project of
Fujian Province of China (No. 2005J001).
Notes and references
1 Selected leading reviews: (a) D. W. Domaille, E.-L. Que and
C.-J. Chang, Nature Chem. Biol., 2008, 4,
168;
(b) S. W. Thomas, G. D. Joly and T. M. Swager, Chem. Rev.,
2007, 107, 1339; (c) P.-J. Jiang and Z.-J. Guo, Coord. Chem. Rev.,
2004, 248, 205; (d) K. Rurack, Spectrochim. Acta, Part A, 2001, 57,
2161; (e) L. Prodi, F. Bolletta, M. Montalti and N. Zaccheroni,
Coord. Chem. Rev., 2000, 205, 59; (f) B. Valeur and I. Leray,
Coord. Chem. Rev., 2000, 205, 3; (g) A. P. deSilva, H. Q.
N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy,
J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515;
(h) I. Oehme and O. S. Wolfbeis, Microchim. Acta, 1997, 126, 3;
(i) L. Fabbrizzi, M. Licchelli, P. Pallavicini, D. Sacchi and
A. Taglietti, Analyst, 1996, 121, 1763.
2 (a) C. Pellerito, L. Nagy, L. Pellerito and A. Szorcsik,
J. Organomet. Chem., 2006, 691, 1733; (b) K. E. Appel, Drug
Metab. Rev., 2004, 36, 763; (c) V. C. Karpiak and C. L. Eyer, Cell
Biol. Toxicol., 1999, 15, 261.
3 (a) L. Pellerito and L. Nagy, Coord. Chem. Rev., 2002, 224, 111;
(b) M. Nath, S. Pokharia and R. Yadav, Coord. Chem. Rev., 2001,
215, 99.
4 (a) B. A. Buck-Koehntop, F. Porcelli, J. L. Lewin, C. J. Cramer
and G. Veglia, J. Organomet. Chem., 2006, 691, 1748;
(b) S. K. Dubey and U. Roy, Appl. Organomet. Chem., 2003, 17,
3; (c) M. Hoch, Appl. Geochem., 2001, 16, 719.
In summary, we have developed a highly selective
fluorescent receptor for HOTs in aqueous solution. The new
5 Recent representative examples: (a) H. Yin, J. Cui and Y. Qiao,
Inorg. Chem. Commun., 2008, 11, 684; (b) T. S. B. Baul,
´
C. Masharing, G. Ruisi, R. Jirasko, M. Holcapek, D. de Vos,
D. Wolstenholme and A. Linden, J. Organomet. Chem., 2007, 692,
¨
4849; (c) M. C¸ elebier, E. S- ahin, N. Ancın, N. A. Ozta-s and
¨
S. G. Ozta-s, Appl. Organomet. Chem., 2007, 21, 913;
(d) B. Samanta, J. Chakraborty, D. K. Dey, V. Gramlich and
S. Mitra, Struct. Chem., 2007, 18, 287; (e) J. M. Rivera,
D. Guzma
R. Santillan, P. G. Lacroix and N. Farfa
2006, 691, 1722.
´
n, M. Rodriguez, J. F. Lamere, K. Nakatani,
´
n, J. Organomet. Chem.,
6 Related Reviews: (a) G. J. Mohr, Anal. Bioanal. Chem., 2006, 386,
1201; J. P. Lorand and J. Edwards, J. Org. Chem., 1959, 24, 769;
(b) H. Cao and M. D. Heagy, J. Fluoresc., 2004, 14, 569.
7 K. M. K. Swamy, S.-K. Ko, S. K. Kwon, H. N. Lee, C. Mao,
J.-M. Kim, K.-H. Lee, J. Kim, I. Shin and J. Yoon, Chem.
Commun., 2008, 5915.
8 For the elegant use of boronic acid-linked flexible fluorophores to
induce fluorescence enhancement, see: (a) K. Sandanayake,
K. Nakashima and S. Shinkai, J. Chem. Soc., Chem. Commun.,
1994, 1621; (b) M. Takeuchi, T. Mizuno, H. Shinmori,
M. Nakashima and S. Shinkai, Tetrahedron, 1996, 52, 1195;
(c) M. Takeuchi, S. Yoda, T. Imada and S. Shinkai, Tetrahedron,
1997, 53, 8335.
Fig. 4 The influence of coexistence of other metal species on the
fluorescence response of 2 to 20 equiv. of BuSn(OH)2Cl in H2O–EtOH
(90 : 10, v/v). 2: 1.0 ꢂ 10ꢀ6 M; pH: 7.4, buffered by 0.01 M Tris-HCl;
9 (a) K. F. Freed, Acc. Chem. Res., 1978, 11, 74; (b) M. Klessinger
and J. Michl, Excited States and Photochemistry of Organic
Molecules, VCH, New York, 1995; (c) S. A. McFarland and
N. S. Finney, J. Am. Chem. Soc., 2001, 123, 1260.
l
ex/lem: 403/474 nm. K+, Na+, Mg2+, Ca2+, Ba2+, Al3+: 1000
equiv.; Cd2+, Ag+, Mn2+, Ni2+, Zn2+, Pb2+, Co2+, Fe3+, Cr3+
:
10 J.-S. Wu, W.-M. Liu, X.-Q. Zhuang, F. Wang, P.-F. Wang,
S.-L. Tao, X.-H. Zhang, S.-K. Wu and S.-T. Lee, Org. Lett.,
2007, 9, 33.
100 equiv.; Hg2+, Cu2+, Bu3SnCl, Bu2SnCl2 BuSnCl3, SnCl4, SnCl2,
Me2SnCl2, Ph2SnCl2: 20 equiv.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4179–4181 | 4181