phinic acid, and aminoalkanesulfonic acid residues, has been
synthesized until now. Herein, we report the first and
convergent synthesis of sulfonophosphinopeptides via the
Mannich-type reaction of N-protected 2-aminoalkanesulfona-
mides, aldehydes, and aryldichlorophosphines and subsequent
aminolysis with amino esters.
anhydrous acetonitrile and subsequent aminolysis with ethyl
glycinate hydrochloride or ethyl glycinate (Scheme 2, R1 )
Scheme 2. Synthesis of Sulfonophosphinopeptides 3
Previously, we used the Mannich-type reactions of car-
bamates or amino amides, aldehydes, and chlorophosphites,
or aryldichlorophosphines and subsequent aminolysis with
amino or peptide esters to prepare phosphonopeptides10 and
phosphinopeptides6 or alcoholysis with hydroxyl esters or
hydrolysis to give rise to depsiphosphonopeptides.10,11 In the
current method, we have substituted sulfonamides as the
amine component in the Mannich-type reaction with alde-
hydes and aryldichlorophosphines to generate hybrid sul-
fonophosphinopeptides in a one-pot pseudo-four-component
condensation reaction (Scheme 2). To the best of our
knowledge, this is the first synthesis of hybrid sulfonophos-
phinopeptides. The synthetic method is a convergent and
atom-economic strategy for synthesis of sulfonophosphi-
nopeptides.
H, R2 ) Ph, Ar ) 4-MePh, AA ) Gly). After several
attempts (Table 1, entries 1-3), a hybrid sulfonophosphi-
We have recently reported several efficient routes to prepare
structurally diverse substituted taurines (2-aminoalkanesulfonic
acids).12 In a manner similar to the previously reported
method,13 N-protected 2-aminoalkanesulfonamides 1a and 1b
were prepared from the corresponding 2-aminoalkanesulfonic
acids by protection of the amino group with benzyl chlorofor-
mate under basic conditions, conversion of the sulfonic acid to
the sulfonyl chloride with thionyl chloride, and subsequent
aminolysis with ammonia (Scheme 1).
Table 1. Synthesis of Sulfonophosphinopeptidesa
entry peptide R1
R2
Ar
AA
yieldb (%)
1
2
3
4
5
6
7
8
9
3a
3a
3a
3b
3c
3d
3e
3e
3f
H
H
H
H
H
H
Ph
Ph
Ph
Ph
4-MePh Gly
4-MePh Gly
4-MePh Gly
30c
43d
75
65
74
Ph
Gly
4-MePh Ph
4-ClPh
Gly
Ph
Ph
Ph
Ph
Ph
Gly
70
Bn Ph
Bn Ph
Bn 4-ClPh
Bn Ph
ꢀ-Ala
ꢀ-Ala
Gly
62
60e
60
Scheme 1. Synthesis of N-Protected
2-Aminoalkanesulfonamides 1
10
3g
(S)-Leu
56
a The reaction was conducted in a molar ratio of sulfonamide/aldehyde/
ArPCl2 of 1.9:2.0:2.0 at 45 °C for 12 h first and then stirred for 24 h after
addition of an amino ester (6.0 mmol) and TEA (8.0 mmol). b Isolated yield.
c The reaction was conducted in a molar ratio of sulfonamide/aldehyde/
ArPCl2 of 2.4:2.7:2.7 with GlyOEt···HCl (8.0 mmol) and TEA (8.0 mmol).
d The reaction was conducted as in footnote c with GlyOEt (8.0 mmol).
e DIPEA was used instead of TEA.
nopeptide 3a was obtained in good yield (Table 1, entry 3).
We then explored the use of other N-protected 2-aminoal-
kanesulfonamide, aromatic aldehyde, aryldichlorophosphine,
and amino acid ethyl ester components in this reaction (Table
1). The results indicate that different aromatic aldehydes and
aryldichlorophosphines show similar reactivity (Table 1,
entries 3-6). However, the product yield obviously depends
on the steric hindrance of aminoalkanesulfonamides and
amino esters (Table 1, entries 4, 7, 9, and 10). 2-Aminoet-
hanesulfonamide (1a) and ethyl glycinate show higher yields
than (S)-2-amino-3-phenylpropanesulfonamide (1b) and ethyl
(S)-leucinate.
We initially optimized the reaction of the sulfonamide 1a
with benzaldehyde and 4-methylphenyldichlorophosphine in
(7) (a) For a review, see: Xu, J. X. Chin J. Org. Chem. 2003, 23, 1–9.
(b) For an example, see: Carson, K. G.; Schwender, C. F.; Shroff, H. N.;
Cochran, N. A.; Gallant, D. L.; Briskin, M. J. Bioorg. Med. Chem. Lett.
1997, 7711-714.
(8) (a) Lowik, D. W. P. M.; Liskamp, R. W. J. Eur. J. Org. Chem.
2000, 1219–1228. (b) Luisi, G.; Calcagni, A.; Pinnen, F. Tetrahedron Lett.
1993, 34, 2391–2392. (c) Gude, M.; Piarulli, U.; Potenza, D.; Salom, B.;
Gennari, C. Tetrahedron Lett. 1996, 47, 8589–8592. (d) Gennari, C.; Salom,
B.; Potenza, D.; Williams, A. Angew. Chem., Int. Ed. Engl. 1994, 33, 2067–
2069.
(9) (a) Moree, W. J.; van der Marel, G. A.; Liskamp, R. M. J.
Tetrahedron Lett. 1991, 32, 409–412. (b) Moree, W. J.; van Gent, L. C.;
van der Marel, G. A.; Liskamp, R. M. J. Tetrahedron 1993, 49, 1133–
1150. (c) Moree, W. J.; van der Marel, G. A.; Liskamp, R. M. J. Tetrahedron
Lett. 1992, 33, 6389–6392. (d) Moree, W. J.; van der Marel, G. A.; Liskamp,
R. M. J. J. Org. Chem. 1995, 60, 5157–5169.
(10) Fu, N. Y.; Zhang, Q. H.; Duan, L. F.; Xu, J. X. J. Peptide Sci.
2006, 12, 303–309.
(11) (a) Xu, J. X.; Gao, Y. H. Synthesis 2005, 783–788. (b) Liu, H.;
Cai, S. Z.; Xu, J. X. J. Peptide Sci 2006, 12, 337–340.
Org. Lett., Vol. 11, No. 17, 2009
3923