14 (a) S.-L. You, X.-L. Hou, L.-X. Dai, B.-X. Dao and J. Sun, Chem.
Commun., 2000, 1933; (b) J. M. Longmire, B. Wang and X. Zhang,
Tetrahedron Lett., 2000, 41, 5435; (c) P. Stepnicka, New J. Chem.,
2002, 26, 567; (d) B. Breit and D. Breuninger, Synthesis, 2005,
2782.
15 For applications, see: (a) ref. 14a–b; (b) S.-L. You, Y.-M. Luo,
W.-P. Deng, X.-L. Hou and L.-X. Dai, J. Organomet. Chem., 2001,
´ ´
637–639, 845; (c) M. Lamac, J. Tauchman, I. Cısarova and
plane comprising these atoms, moved away from the carboxyl
group.
35 The Cp rings are tilted by 2.3(2)1 and bind symmetrically to the iron
atom (D(Fe–Cg) = 0.014 A). The asymmetry in functional group
attachment is diminished compared to free Hdpc (D E 11 for C(2/5)-
C1-C11, and D E 11 for C(1/3)-C2-P1 and C(7/10)-C6-P2 angles).
36 (a) B. M. Trost and D. L. Van Vranken, Chem. Rev., 1996, 96, 395;
(b) B. M. Trost and M. L. Crawley, Chem. Rev., 2003, 103, 2921;
(c) B. M. Trost and C. Lee, Asymmetric Allylic Alkylation Reac-
tions, in Catalytic Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH,
New York, 2nd edn, 2000, ch. 8E, pp. 593–650; (d) G. Helmchem
and A. Pfaltz, Acc. Chem. Res., 2000, 33, 336; (e) G. Helmchem,
J. Organomet. Chem., 1999, 576, 203; (f) T. Hayashi, Asymmetric
Allylic Substitution and Grignard Cross-Coupling, in Catalytic
Asymmetric Synthesis, ed. I. Ojima, VCH, New York, 1993,
ch. 7.1, pp. 325-365.
P. Stepnicka, Organometallics, 2007, 26, 5042; (d) S.-L. You,
X.-L. Hou and L.-X. Dai, J. Organomet. Chem., 2001, 637–639,
762; (e) S.-L. You, X.-L. Hou, L.-X. Dai and X.-Z. Zhu, Org.
Lett., 2001, 3, 149; (f) J. M. Longmire, B. Wang and X. Zhang,
J. Am. Chem. Soc., 2002, 124, 13400; (g) B. Breit and
D. Breuninger, J. Am. Chem. Soc., 2004, 126, 10244; (h) B. Breit
and D. Breuninger, Eur. J. Org. Chem., 2005, 3916; (i) B. Breit and
D. Breuninger, Synthesis, 2005, 147.
16 Only esters and amides of IV are known: (a) W. Zhang, T. Kida,
Y. Nakatsuji and I. Ikeda, Tetrahedron Lett., 1996, 37, 7995;
(b) W. Zhang, T. Shimanuki, T. Kida, Y. Nakatsuji and
I. Ikeda, J. Org. Chem., 1999, 64, 6247; (c) R. S. Laufer,
U. Veith, N. J. Taylor and V. Snieckus, Org. Lett., 2000, 2, 629.
17 For examples of the resolution of carboxylic acids via D-glucose
diacetonide esters, see: (a) J. Svoboda, K. Capek and J. Palecek,
Collect. Czech. Chem. Commun., 1987, 52, 766; (b) A. Netscher and
I. Gautschi, Liebigs Ann. Chem., 1992, 543; (c) O. I. Kolodiazhnyi
and E. V. Griskun, Tetrahedron: Asymmetry, 1996, 7, 967.
18 M. Lamac, J. Cvacka and P. Stepnicka, J. Organomet. Chem.,
2008, 693, 3430.
19 Column chromatography is usually not sufficient for a complete
separation of the diastereoisomers, affording only mixtures with
gradually increasing (Sp)-3/(Rp)-3 ratios. Chromatography
combined with crystallisation is a much more efficient resolution
method.
37 (a) U. Leutenegger, G. Umbricht, C. Fahrni, P. von Matt and
A. Pfaltz, Tetrahedron, 1992, 48, 2143; (b) B. M. Trost and
D. J. Murphy, Organometallics, 1985, 4, 1143; (c) M. T. El Gihani
and H. Heaney, Synthesis, 1998, 357.
38 Definition: ee = ([R] ꢂ [S])/([R] + [S]). Positive ee values indicate
that (R)-15 is the dominant product.
39 For introductory reviews, see: (a) C. Girard and H. B. Kagan, Angew.
Chem., Int. Ed., 1998, 37, 2922; (b) H. B. Kagan, Synlett, 2001, 888.
40 For selected examples of (Z3-allyl)palladium(II) complexes with
P,P-chelating ferrocene ligands, see: (a) P. Barbaro, P. S. Pregosin,
R. Salzmann, A. Albinati and R. W. Kunz, Organometallics, 1995,
14, 5160; (b) U. Burckhardt, V. Gramlich, P. Hofmann, R. Nesper,
P. S. Pregosin, R. Salzmann and A. Togni, Organometallics, 1996,
15, 3496; (c) S.-L. You, X.-L. Hou, L.-X. Dai, Y.-H. Yu and
W. Xia, J. Org. Chem., 2002, 67, 4684; (d) T. Tu, Y.-G. Zhou,
X.-L. Hou, L.-X. Dai, X.-C. Dong, Y.-H. Yu and J. Sun,
Organometallics, 2003, 22, 1255; (e) T. Sturm, B. Abad,
20 B. Schetter and B. Speiser, J. Organomet. Chem., 2004, 689, 1472.
21 1H NMR data: (a) A. De Bruyn, D. Danneels, M. Anteunis and
E. Saman, J. Carbohydr., Nucleosides Nucleotides, 1975, 2, 227; 13C
NMR data: (b) D. M. Vyas, H. C. Jarrell and W. A. Szarek, Can. J.
Chem., 1973, 53, 2748.
22 The observed distance is comparable with the sum of the van der
Waals radii (2.89 A). The radii were taken from the CCDC web
August 5, 2008).
W. Weissensteiner, K. Mereiter, B. R. Manzano and F. A. Jalon,
´
J. Organomet. Chem., 2006, 225, 209; (f) C.-W. Cho, J.-H. Son and
K.-H. Ahn, Tetrahedron: Asymmetry, 2006, 17, 2240.
41 U. Nettekoven, M. Widhalm, H. Kalchhauser, P. C. J. Kamer,
P. W. N. M. van Leeuwen, M. Lutz and A. L. Spek, J. Org. Chem.,
2001, 66, 759.
42 (a) C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990,
112, 5525. See also: (b) C. A. Hunter, K. R. Lawson, J. Perkins and
C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 2001, 651.
43 The centroidꢀ ꢀ ꢀcentroid distance in hexagonal graphite (space
group P63/mmm) is ca. 3.65 A. P. Trucano and R. Chen, Nature,
1975, 258, 136.
44 (a) F. O. Rice and E. Teller, J. Chem. Phys., 1938, 6, 489 (erratum:
F. O. Rice and E. Teller, J. Chem. Phys., 1939, 7, 199); (b) J. Hine,
Adv. Phys. Org. Chem., 1977, 15, 1.
45 In the presence of BSA, the carboxyl group of the free acid ligand
can be expected to be (at least partially) converted to the silyl ester.
46 This was already demonstrated for 10,2-bis(phosphine)-1-
oxazolinylferrocenes. T. Tu, X.-L. Hou and L.-X. Dai,
J. Organomet. Chem., 2004, 689, 3847.
23 H.-B. Kraatz, J. Inorg. Organomet. Polym. Mater., 2005, 15, 83.
24 For examples involving ferrocene phosphinocarboxylic acids, see:
(a) Ref. 12a–c, f, g; (b) L. Meca, D. Dvorak, J. Ludvık, I. Cısarova
´ ´ ´ ´
and P. Stepnicka, Organometallics, 2004, 23, 2541.
25 Formation of the related Hdpf-benzotriazolyl ester was noted
during the reaction of Hdpf with 1,2-diaminoethane in the presence
of EDC and HOBt (see ref. 12b).
26 Dppf crystallises with the symmetry of the monoclinic space group
P21/a with the Fe atom residing on the inversion centre.
27 U. Casellato, D. Ajo, G. Valle, B. Corain, B. Longato and
R. Graziani, J. Crystallogr. Spectrosc. Res., 1988, 18, 583.
28 P. Stepnicka and I. Cı
´
sarova
´
, New J. Chem., 2002, 26, 567.
47 Acetate 14a was prepared by acetylation of commercial racemic
1,3-diphenylallyl alcohol: I. D. G. Watson, S. A. Styler and
A. K. Yudin, J. Am. Chem. Soc., 2004, 126, 5086.
48 F. Ferioli, C. Fiorelli, G. Martelli, M. Monari, D. Savoia and
P. Tobaldin, Eur. J. Org. Chem., 2005, 1416.
49 T. Hayashi, A. Yamamoto, Y. Ito, E. Nishioka, H. Miura and
K. Yanagi, J. Am. Chem. Soc., 1989, 111, 6301.
50 T. Hayashi, A. Yamamoto, T. Hagihara and Y. Ito, Tetrahedron
Lett., 1986, 27, 191.
29 The difference between P1-C2-C(1/3) angles is ca. 31 while the
C(5/2)-C1-C11 and P2-C6-C(7/10) angles differ by ca. 71 in the
pairs. The pivotal phosphorus atoms (P1 and P2) are displaced by
ca. 0.1 A from the least-squares planes of their bonding cyclo-
pentadienyl rings. By contrast, the C11 atom is coplanar with the
Cp1 ring within 0.01 A and the carboxyl group is rotated by
81 from the Cp1 plane.
30 (a) W. H. Ojala, W. B. Gleason, M. P. E. Connelly and
R. R. Wallis, Acta Crystallogr., Sect. C: Cryst. Struct. Commun.,
1996, 52, 155; (b) J. Sheville, D. Berndt, T. Wagner and P. Norris,
J. Chem. Crystallogr., 2003, 33, 409.
31 The differences are below ca. 0.1 A for the bond lengths and
typically ca. 2–31 for the angles.
32 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi and
K. Hirotsu, J. Am. Chem. Soc., 1984, 106, 158.
33 I. R. Butler, W. R. Cullen, J.-T. Kim, S. J. Rettig and J. Trotter,
Organometallics, 1985, 4, 972.
51 P. van der Sluis and A. L. Spek, Acta Crystallogr., Sect. A:
Fundam. Crystallogr., 1990, 46, 194.
52 A. L. Spek, Platon—a multipurpose crystallographic tool, Utrecht
University, Utrecht, The Netherlands, 2003 and updates. For
reference, see: A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
53 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano,
C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori
and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115.
54 G. M. Sheldrick, SHELXL97. Program for Crystal Structure
Refinement from Diffraction Data, University of Gottingen,
Germany, 1997.
34 Pd, Cl2, P1, and P2 are coplanar within ca. 0.02 A. The remaining
donor atom, Cl1, is displaced by 0.163(1) A from the least-squares
¨
ꢁc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
1562 | New J. Chem., 2009, 33, 1549–1562