Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 8 3395
(4) (a) Islam, M. N.; Iskander, M. N. Microtubulin Binding Sites as
Target for Developing Anticancer Agents. Mini-Rev. Med. Chem.
2004, 4, 1077–1104. (b) Hadfield, J. A.; Ducki, S.; Hirst, N.; McGown,
A. T. Tubulin and Microtubules as Targets for Anticancer Drugs. Prog.
Cell Cycle Res. 2003, 5, 309–325. (c) Hamel, E. Antimitotic Natural
Products and Their Interactions with Tubulin. Med. Res. Rev. 1996, 16,
207–231.
(21) GAST medium is glycerol-alanine-salts-Tween 80 medium without
added iron. See, (a) Voss, J. J. D.; Rutter, K.; Schroeder, B. G.; Su,
H.; Zhu, Y.; Barry, C. E. The salicylate-derived mycobactin side-
rophores of Mycobacterium tuberculosis are essential for growth in
macrophages. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 1252–1257.
(b) Cho, S. H.; Warit, S.; Wan, B.; Hwang, C. H.; Pauli, G. F.; Franzblau,
S. G. Low-Oxygen-Recovery Assay for High-Throughput Screening of
Compounds against Nonreplicating Mycobacterium tuberculosis. Anti-
microb. Agents Chemother. 2007, 51, 1380–1385.
(5) Hanahan, D.; Weinberg, R. A. The Hallmarks of Cancer. Cell
2000, 100, 57–70.
(6) Kuppens, I. E. L. M. Current State of the Art of New Tubulin
Inhibitors in the Clinic. Curr. Clin. Pharmacol. 2006, 1, 57–70.
(7) (a) Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T.
Tubulin as a Target for Anticancer Drugs: Agents Which Interact
with the Mitotic Spindle. Med. Res. Rev. 1998, 18, 259–296.
(b) Kiselyov, A.; Balakin, K. V.; Tkachenko, S. E.; Savchuk, N.;
Ivachtchenko, A. V. Recent Progress in Discovery and Development
of Antimitotic Agents. Anti-Cancer Agents Med. Chem. 2007, 7, 189–
208.
(8) Backer, G.; Beckers, T.; Emig, P.; Klenner, T.; Kutscher, B.;
Nickel, B. New small-molecule tubulin inhibitors. Pure Appl.
Chem. 2001, 73, 1459–1464.
(9) Wood, K. W.; Cornwell, W. D.; Jackson, J. R. Past and future of
the mitotic spindle as an oncology target. Curr. Opin. Pharmacol.
2001, 1, 370–377.
(10) (a) Snow, G. A. Mycobactins: Iron-Chelating Growth Factors
from Mycobacteria. Bacteriol. Rev. 1970, 34, 99–125. (b) White, A.
J.; Snow, G. A. Isolation of Mycobactins form Various Mycobacteria:
The Properties of Mycobactins S and H. Biochem. J. 1969, 111, 785–
792.
(11) (a) Maurer, P. J.; Miller, M. J. Total Synthesis of a Mycobactin:
Mycobactin S2. J. Am. Chem. Soc. 1983, 105, 240–245. (b) Hu, J.;
Miller, M. J. Total Synthesis of a Mycobactin S, a Siderophore and
Growth Promoter of Mycobacterium smegmatis, and Determination of
its Growth Inhibitory Activity against Mycobacterium tuberculosis.
J. Am. Chem. Soc. 1997, 119, 3462–3468.
(22) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R.
Synthesis of Functionalized Oxazolines and Oxazoles with DAST
and Deoxo-Fluor. Org. Lett. 2000, 2, 1165–1168.
(23) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry:
Diverse Chemical Function from a Few Good Reactions. Angew.
Chem., Int. Ed. 2001, 40, 2004–2021. (b) Moses, J. E.; Moorhouse,
A. D. The Growing Applications of Click Chemistry. Chem. Soc. Rev.
2007, 36, 1249–1262.
(24) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed
Regioselective “Ligation” of Azides and Terminal Alkynes. Angew.
Chem., Int. Ed. 2002, 41, 2596–2599. (b) Tornøe, C. W.; Christensen,
C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by
Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of
Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064.
(25) Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click
Chemistry on Drug Discovery. Drug Discovery Today 2003, 8,
1128–1137.
(26) Alvarez, S. G.; Alvarez, M. T. A Practical Procedure for the
Synthesis of Alkyl Azides at Ambient Temperature in Dimethyl
Sulfoxide in High Purity and Yield. Synthesis 1997, 4, 413–414.
(27) (a) Boyd, M. R.; Paull, K. D. Some Practical Considerations and
Applications of the National Cancer Institute In Vitro Anticancer
Drug Discovery Screen. Drug Dev. Res. 1995, 34, 91–109.
(b) Shoemaker, R. H. The NCI60 Human Tumor Cell Line Anticancer
Drug Screen. Nature Rev. Cancer 2006, 6, 813–823.
(12) Vergne, A. F.; Walz, A. J.; Miller, M. J. Iron chelators from
mycobacteria (1954-1999) and potential therapeutic applications.
Nat. Prod. Rep. 2000, 17, 99–116.
(28) (a) Ross, D. T.; Scherf, U.; Eisen, M. B.; Perou, C. M.; Rees, C.;
Spellman, P.; Iyer, V.; Jeffrey, S. S.; Van de Rijn, M.; Waltham, M.;
Pergamenschikov, A.; Lee, J. C. F.; Lashkari, D.; Shalon, D.;
Myers, T. G.; Weinstein, J. N.; Botstein, D.; Brown, P. O.
Systematic variation of gene expression patterns in human cancer
cell lines. Nat. Genet. 2000, 24, 227–235. (b) Ellison, G.; Klinowska,
T.; Westwood, R. F. R.; Docter, E.; French, T.; Fox, J. C. Further
evidence to support the melanocytic origin of MDA-MB-435. J. Clin.
Pathol.: Mol. Pathol. 2002, 55, 294–299.
(29) (a) Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.;
Scudiero, D. A.; Rubinstein, L.; Plowman, J.; Boyd, M. R. Display
and Analysis of Patterns of Differential Activity of Drugs Against
Human Tumor Cell Lines: Development of Mean Graph and
COMPARE Algorithm. J. Natl. Cancer Inst. 1989, 81, 1088–
1092. (b) Zaharevitz, D. W.; Holbeck, S. L.; Bowerman, C.; Svetlik,
P. A. COMPARE: a web accessible tool for investigating mechanisms of
cell growth inhibition. J. Mol. Graphics Modell. 2002, 20, 297–303.
(30) (a) Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.;
Scudiero, D. A.; Rubinstein, L.; Plowman, J.; Boyd, M. R. Display
and Analysis of Patterns of Differential Activity of Drugs Against
Human Tumor Cell Lines: Development of Mean Graph and
COMPARE Algorithm. J. Natl. Cancer Inst. 1989, 81, 1088–
1092. (b) Zaharevitz, D. W.; Holbeck, S. L.; Bowerman, C.; Svetlik,
P. A. COMPARE: a web accessible tool for investigating mechanisms
of cell growth inhibition. J. Mol. Graphics Modell. 2002, 20, 297–
303.
(13) (a) Moraski, G. C.; Chang, M.; Villegas-Estrada, A.; Franzblau, S.;
€
Mollmann, U.; Miller, M. J. Structure-Activity Relationship of
New Antituberculosis Agents Derived from Oxazoline and Oxa-
zole Benzyl Esters. Eur. J. Med. Chem. 2010, 45(5), 1703-1716.
(b) Moraski, G. C.; Franzblau, S. G.; Miller, M. Utilization of the Suzuki
Coupling to Enhance the Antituberculosis Activity of Aryl Oxazoles.
Heterocyles 2010, 80, 977–988.
(14) Fennell, K. A.; Miller, M. J. Synthesis of Amamistatin Fragments
and Determination of Their HDAC and Antitumor Activity. Org.
Lett. 2007, 9, 1683–1685.
(15) Siddiquee, K. A. Z.; Gunning, P. T.; Glenn, M.; Katt, W. P.;
Zhang, S.; Schroeck, C.; Sebti, S. M.; Jove, R.; Hamilton, A. D.;
Turkson, J. An Oxazole-Based Small-Molecule Stat3 Inhibitor
Modulates Stat3 Stability and Processing and Induces Antitumor
Cell Effects. ACS Chem. Biol. 2007, 2, 787–798.
(16) Kuang, R.; Shue, H. J.; Blythin, D. J.; Shih, N. Y.; Gu, D.; Chen,
X.; Schwerdt, J.; Lin, L.; Ting, P. C.; Zhu, X.; et al. Discovery of a
highly potent series of oxazole-based phosphodiesterase 4 inhibi-
tors. Bioorg. Med. Chem. Lett. 2007, 17, 5150–5154.
(17) (a) Rice, R. L.; Rusnak, J. M.; Yokokawa, F.; Yokokawa, S.;
Messner, D. J.; Boynton, A. L.; Wipf, P.; Lazo, J. S. A Targeted
Library of Small-Molecule, Tyrosine, and Dual-Specificity Phos-
phatase Inhibitors Derived from a Rational Core Design and
Random Side Chain Variation. Biochemistry 1997, 36, 15965–
15974. (b) Ducruet, A. P.; Rice, R. L.; Tamura, K.; Yokokawa, F.;
Yokokawa, S.; Wipf, P.; Lazo, J. S. Identification of New Cdc25 Dual
Specificity Phosphatase Inhibitors in a Targeted Small Molecule Array.
Bioorg. Med. Chem. 2000, 8, 1451–1466.
(18) Takeuchi, K.; Kohn, T. J.; True, T. A.; Mais, D. E.; Wikel, J. H.;
Utterback, B. G.; Wyss, V. L.; Jakubowski, J. A. Development of
Dual-Acting Agents for Thromboxane Receptor Antagonism and
Thromboxane Synthase Inhibition. 3. Synthesis and Biological
Activities of Oxazolecarboxamide-Substituted ω-Phenyl-ω-(3-pyr-
idyl)alkenoic Acid Derivatives and Related Compounds. J. Med.
Chem. 1998, 41, 5362–5374.
(19) Morwick, T.; Berry, A.; Brickwood, J.; Cardozo, M.; Catron, K.;
DeTuri, M.; Emeigh, J.; Homon, C.; Hrapchak, M.; Jacober, S.
Evolution of the Thienopyridine Class of Inhibitors of IκB Kinase-
β, Part I: Hit-to-Lead Strategies. J. Med. Chem. 2006, 49, 2898–2908.
(20) Tai, V. W. F.; Sperandio, D.; Shelton, E. J.; Litvak, J.; Pararaja-
singham, K.; Cebon, B.; Lohman, J.; Eksterowicz, J.; Kantak, S.;
Sabbatini, P.; et al. Discovery and structure-activity relationship
of 2-phenyl-oxazole-4-carboxamide derivatives as potent apotosis
inducers. Bioorg. Med. Chem. Lett. 2006, 16, 4554–4558.
(31) DTP Human Tumor Cell Line Screen, Standard Agent Database;
html.
(32) (a) Bai, R.; Paull, K. D.; Herald, C. L.; Malspeis, L.; Pettit, G. R.;
Hamel, E.; Halichondrin, B; Homohalichondrin, B Marine Nat-
ural Products Binding in the Vinca Domain of Tubulin. J. Biol.
Chem. 1991, 266, 15882–15889. (b) Paull, K. D.; Lin, C. M.; Malspeis,
L.; Hamel, E. Identification of Novel Antimitotic Agents Acting at the
Tubulin Level by Computer-Assisted Evaluation of Differential Cyto-
toxicity Data. Cancer Res. 1992, 52, 3892–3900. (c) Kuo, S. C.; Lee, H.
Z.; Juang, J. P.; Lin, Y. T.; Wu, T. S.; Chang, J. J.; Lednicer, D.; Paull, K.
D.; Lin, C. M.; Hamel, E.; Lee, K. H. Synthesis and Cytotoxicity of
1,6,7,8-Substituted 2-(40-Substituted phenyl)-4-quinolones and Related
Compounds: Identification as Antimitotic Agents Interacting with
Tubulin. J. Med. Chem. 1993, 36, 1146–1156.
(33) Stefely, J. A.; Moraski, G. A.; Miller, M. J. Anti-cancer Com-
pounds, Synthesis Thereof, And Methods Of Using Same. Patent
WO/2009/111502, 2009.
(34) Hollingshead, M. G.; Alley, M. C.; Camalier, R. F.; Abbott, B. J.;
Mayo, J. G.; Malspeis, L.; Grever, M. R. In vivo cultivation of
tumor cells in hollow fibers. Life Sci. 1995, 57, 131–141.