C O M M U N I C A T I O N S
improve the localization of the probe, the same sample was
reanalyzed by LTQ-FTICR-MS, giving rise to a mass of
861.7839 Da within 6.6 ppm of the calculated mass of the
modified peptide. Furthermore, all the MS2 b and y fragment
ions observed by LTQ-FTICR-MS matched to within 0.02 Da
enabling us to localize the site of modification to K115. The
unmodified peptide V98APEEHPTLLTEAPLNPK115 was also
identified, which indicates that this residue was only partially
modified.
were blue fluorescent (Figure 2f) from the binding of 13, as evident
by costaining with FITC-phalloidin (Figure 2e).
This investigation provides definitive support for the use of a
dye transfer protocol via an acyl phenol motif for mode of action
studies. By transferring the dye from the natural product to its
protein target, we were able to streamline cellular, target elucidation,
and binding site determination studies into a single workflow (see
Figure 1). Because bioactive natural products bind to proteins in
selective binding pockets, the process of natural product mediated
ligation may also be used to direct protein modifications site
specifically. Studies are now underway to evaluate the scope of
this reaction centered on the electronic nature of the phenol and its
ability to transfer its payload.
Acknowledgment. We thank Qishan Lin (CFG at University
of Albany) for preliminary protein ID analyses. Support was
provided by the NCI under Grant R37 CA44848 (to W.F.), the
V-foundation (to P.C.D.), and NIH R01 GM086283 (to P.C.D.).
Supporting Information Available: Synthetic methods, copies of
NMR spectra, protocols for cell imaging studies, IP studies and actin
assays, detailed methods for the mass spectral studies, copies of original
images in Figures 2-3 as well as additional references are available
References
(1) (a) Leslie, B. J.; Hergenrother, P. J. Chem. Soc. ReV. 2008, 37, 1347. (b)
Wang, X.; Imber, B. S.; Schreiber, S. L. Bioconjugate Chem. 2008, 19,
585.
(2) Recent examples: (a) Bowers, A.; West, N.; Taunton, J.; Schreiber, S. L.;
Bradner, J. E.; Williams, R. M. J. Am. Chem. Soc. 2008, 130, 11219. (b)
Kotake, Y.; Sagane, K.; Owa, T.; Mimori-Kiyosue, Y.; Shimizu, H.; Uesugi,
M.; Ishihama, Y.; Iwata, M.; Mizui, Y. Nat. Chem. Biol. 2007, 3, 570. (c)
Hughes, C. C.; MacMillan, J. B.; Gaudeˆncio, S. P.; Fenical, W.; La Clair,
J. J. Angew. Chem., Int. Ed. 2009, 48, 728.
(3) (a) Gough, J. D.; Crews, C. M. Ernst Schering Res. Found. Workshop.
2006, 61. (b) Drahl, C.; Cravatt, B. F.; Sorensen, E. J. Angew. Chem., Int.
Ed. 2005, 44, 5788.
(4) Altmann, K. H.; et al. ChemBioChem. 2009, 10, 16.
(5) (a) Peddibhotla, S.; Dang, Y.; Liu, J. O.; Romo, D. J. Am. Chem. Soc.
2007, 129, 12222. (b) Alexander, M. D.; et al. ChemBioChem. 2006, 7,
409.
(6) (a) Carrico, I. S.; Carlson, B. L.; Bertozzi, C. R. Nat. Chem. Biol. 2007, 3,
321. (b) Sadaghiani, A. M.; Verhelst, S. H.; Bogyo, M. Curr. Opin. Chem.
Biol. 2007, 11, 20. (c) Heal, W. P.; Wickramasinghe, S. R.; Leatherbarrow,
R. J.; Tate, E. W. Org. Biomol. Chem. 2008, 7, 2308. (d) Channon, K.;
Bromley, E. H.; Woolfson, D. N. Curr. Opin. Struct. Biol. 2008, 18, 491.
(7) (a) Colombo, M.; Peretto, I. Drug DiscoV. Today 2008, 13, 677. (b) Hein,
C. D.; Liu, X. M.; Wang, D. Pharm. Res. 2008, 25, 2216. (c) Moorhouse,
A. D.; Moses, J. E. ChemMedChem. 2008, 3, 715.
(8) (a) Weisbrod, S. H.; Marx, A. Chem. Commun. 2008, 30, 5675. (b) de
Arau´jo, A. D.; Palomo, J. M.; Cramer, J.; Seitz, O.; Alexandrov, K.;
Waldmann, H. Chemistry 2006, 12, 6095.
(9) (a) Binder, J. B.; Raines, R. T. Curr. Opin. Chem. Biol. 2008, 12, 767. (b)
Kirshenbaum, K.; Arora, P. S. Nat. Chem. Biol. 2008, 4, 527.
(10) Tanaka, Y.; Bond, M. R.; Kohler, J. J. Mol. Biosyst. 2008, 4, 473.
(11) Guizzunti, G.; Brady, T. P.; Malhotra, V.; Theodorakis, E. A. Bioorg. Med.
Chem. Lett. 2007, 15, 320.
Figure 4. Marinopyrrole probe 13 transfers an IAF tag selectively to residue
K115 of actin. (a) Structure of actin (green) noting the position of the targeted
K115 residue (blue) and other lysine residues (red). (b) Side and (c) frontal
views of the putative marinopyrrole binding pocket (aqua shaded). Images
were developed using a complex between rabbit skeletal muscle actin and
latrunculin A at 2.85 Å (pdb id: 1IJJ). The side chain amine of K115 (star)
and the latrunculin A binding pocket (sphere) are noted.
Lysine 115 occupies a distinct site on actin (star, Figure 4a) that
neither overlaps the ATP, gelsolin, and profilin binding sites (see
Supporting Information) nor overlaps with the pocket targeted by
other known natural products such as latrunculin A (dot, Figure
4a), a marine natural product that binds to the nucleotide binding
cleft of actin. Structural modeling identified a channel that exists
adjacent to the amine terminus of K115, suggesting a putative
marinopyrrole-binding site (Figure 4b,c).
Transfer of the IAF dye from the natural product to actin was
further supported by secondary analyses. First, microcalorimetry
analyses verified the binding between marinopyrrole A (6) and
rabbit muscle actin with a Kd of 0.12 ( 0.2 µM. The strength of
this complex compares favorably to a reported value of 0.2 µM
for latrunculin A (albeit at a different binding site, see Figure 4a).17
Second, using a fluorescence assay (Cytoskeleton Inc.),18 6 was
shown to inhibit the polymerization of a pyrene-labeled G-actin
with an IC50 value of 39.5 ( 6.2 µM (see Supporting Information).
Lastly, actin fibers in live HCT-116 cells treated with probe 13
(12) Hurst, G. B.; Lankford, T. K.; Kennel, S. J. J. Am. Soc. Mass Spectrom.
2004, 15, 832.
(13) (a) Dekant, W. EXS 2009, 99, 57. (b) Johnson, W. W. Drug Metab. ReV.
2008, 40, 101.
(14) During the preparation of this manuscript a team led by Hamachi disclosed
a similar concept using ligand-directed tosylation: Tsukiji, S.; Miyagawa,
M.; Takaoka, Y.; Tamura, T.; Hamachi, I. Nat. Chem. Biol. 2009, 5, 341.
(b) Tsukiji, S.; Wang, H.; Miyagawa, M.; Tamura, T.; Takaoka, Y.;
Hamachi, I. J. Am. Chem. Soc. 2009, 131, 9046.
(15) Gee, K. R.; Archer, E. A.; Kang, H. C. Tetrahedron Lett. 1999, 40, 1471–
1474.
(16) Hughes, C. C.; Prieto-Davo´, A.; Jensen, P. R.; Fenical, W. Org. Lett. 2008,
10, 629.
(17) Coue´, M.; Brenner, S. L.; Spector, I.; Korn, E. D. FEBS Lett. 1987, 213,
316.
(18) (a) Zhai, L.; Zhao, P.; Panebra, A.; Guerrerio, A. L.; Khurana, S. J. Biol.
Chem. 2001, 276, 36163. (b) Pollard, T. D. Anal. Biochem. 1983, 134,
406.
JA903149U
9
12096 J. AM. CHEM. SOC. VOL. 131, NO. 34, 2009