Table 2 Crystal data of compounds 1, 2·C7H8, 3·C7H8, 4·C7H8 and 5·C7H8
Compound
1
2·C7H8
3·C7H8
4·C7H8
5·C7H8
formula
fw [g/mol]
cryst syst
C17H47N3Al3La
513.43
C19H41N3Al2
365.51
monoclinic
P21/c
STOE IPDS-I
10.683(2)
29.104(4)
7.840(2)
96.98(2)
2419.5(6)
4
1.003
0.126
808
163(2)
0.60 ¥ 0.40 ¥ 0.30
26.93
32699
4985
0.1258
95.4
4985
297
0.0492
0.0997
0.0906
0.1104
C32H75N3Al5Y3
903.58
monoclinic
P21/m
STOE IPDS-I
9.540(2)
17.210(2)
14.068(2)
97.87(2)
2288.1(6)
2
1.312
3.891
940
153(2)
0.60 ¥ 0.50 ¥ 0.10
26.98
35996
5097
0.1648
99.0
5097
365
0.0555
0.1244
0.0860
0.1398
C23H51N3Al3Sm
600.96
orthorhombic
Pna21
Bruker APEX
35.417(4)
17.334(5)
10.101(3)
90
6201.7(12)
8
1.287
1.992
2488
153(2)
0.23 ¥ 0.16 ¥ 0.05
30.04
70204
18019
0.0544
99.8
16348
481
0.0535
0.1156
0.0612
0.1187
2.537/-1.451
0.020(11)
679434
C32H75N3Al5Sm3
1087.9
monoclinic
P21/m
Bruker APEX
9.560(3)
17.289(2)
14.173(4)
97.61(2)
2322.0(5)
2
1.556
3.860
1078
153(2)
0.30 ¥ 0.20 ¥ 0.20
30.03
26856
6979
0.0308
99.6
6979
331
0.0378
0.0778
0.0424
0.0793
orthorhombic
P212121
Nonius Kappa CCD
10.8824(6)
14.4357(14)
16.9846(9)
90
2668.2(3)
4
1.278
1.705
1064
150(2)
0.17 ¥ 0.12 ¥ 0.06
27.50
26594
6091
0.0292
99.6
5386
394
0.0197
0.0332
0.0283
0.0352
space group
diffractometer
˚
a [A]
˚
b [A]
˚
c [A]
b [deg]
3
˚
V [A ]
Z
Dcalcd [Mg m-3]
m [mm-1]
F(000)
temperature [K]
crystal size [mm]
qmax [deg]
reflns collected
reflns unique
R(int)
completeness [%]
reflns with I>2s(I)
refined parameters
R1 [I > 2s(I)]
wR2 [I > 2s(I)]
R1 [all data]
wR2 [all data]
-3
˚
rfin max/min [e A ]
absolute struct param
CCDC No.
0.282/-0.361
0.001(8)
711481
0.289/-0.172
—
679432
0.915/-1.505
—
679431
1.536/-1.093
—
679433
17 H. M. Dietrich, G. Raudaschl-Sieber and R. Anwander, Angew.
Chem., 2005, 117, 5437, (Angew. Chem., Int. Ed., 2005, 44,
5303).
18 M. C. Whisler, S. Mac Neil, V. Snieckus and P. Beak, Angew. Chem.,
2004, 116, 2256, (Angew. Chem., Int. Ed., 2004, 43, 2206).
19 R. D. Ko¨hn, Z. Pan, G. Kociok-Ko¨hn and M. F. Mahon, J. Chem.
Soc., Dalton Trans., 2002, 2344.
Notes and references
1 (a) J. E. Kickham, F. Gue´rin and D. W. Stephan, J. Am. Chem. Soc.,
2002, 124, 11486; (b) J. E. Kickham, F. Gue´rin, J. C. Stewart and D.
W. Stephan, Angew. Chem., Int. Ed., 2000, 39, 3263; (c) J. E. Kickham,
F. Gue´rin, J. C. Stewart, E. Urbanska, C. M. Ong and D. W. Stephan,
Organometallics, 2001, 20, 3209.
20 C. S. Tredget, S. C. Lawrence, B. D. Ward, R. G. Howe, A. R. Coley
and P. Mountford, Organometallics, 2005, 24, 3136.
21 P. B. Hitchcock, M. F. Lappert, R. G. Smith, R. A. Bartlett and P. P.
Power, J. Chem. Soc., Chem. Commun., 1988, 1007.
22 M. Zimmermann, J. Takats, G. Kiel, K. W. To¨rnroos and R. Anwander,
Chem. Commun., 2008, 612.
23 M. Layh and W. Uhl, Polyhedron, 1990, 9, 277.
24 W. Uhl, M. Layh and W. Massa, Chem. Ber., 1991, 124, 1511.
25 P. Jutzi, A. Mix, B. Rummel, B. Neumann, H.-G. Stammler, A.
Rozhenko and W. W. Schoeller, in Organosilicon Chemistry VI, vol.
1, ed. N. Auner and J. Weis, Wiley-VCH, Weinheim 2005, p. 69.
26 G. A. Anderson, F. R. Forgaard and A. Haaland, Acta Chem. Scand.,
1972, 26, 1947.
2 F. Gue´rin and D. W. Stephan, Angew. Chem., 1999, 111, 3910, (Angew.
Chem., Int. Ed., 1999, 38, 3698).
3 J. E. Kickham, F. Gue´rin, J. C. Stewart and D. W. Stephan, Angew.
Chem., 2000, 112, 3406, (Angew. Chem., Int. Ed., 2000, 39, 3263).
4 J. E. Kickham, F. Gue´rin, J. C. Stewart, E. Urbanska and D. W. Stephan,
Organometallics, 2001, 20, 1175.
5 P. Wie and D. W. Stephan, Organometallics, 2003, 22, 1992.
6 N. Yue, E. Hollink, F. Gue´rin and D. W. Stephan, Organometallics,
2001, 20, 4424.
7 W. Uhl, F. Breher, A. Lu¨tzen and W. Saak, Angew. Chem., 2000, 112,
414, (Angew. Chem., Int. Ed., 2000, 39, 406).
8 A. Herzog, H. W. Roesky, Z. Zak and M. Noltemeyer, Angew. Chem.,
1994, 33, 967, (Angew. Chem., Int. Ed., 1994, 106, 1035).
9 E. Heins, H. Hinck, W. Kaminsky, G. Oppermann, P. Paulinat and H.
Sinn, Makromol. Chem., 1970, 134, 1.
10 F. N. Tebbe, G. W. Parshall and G. S. Reddy, J. Am. Chem. Soc., 1978,
100, 3611.
11 (a) S. H. Pine, Org. React., 1993, 43, 1; (b) I. Beadham and J. Micklefield,
Curr. Org. Synth., 2005, 2, 231.
12 M. H. Dietrich, K. H. Grove, K. W. To¨rnroos and R. Anwander, J.
Am. Chem. Soc., 2006, 128, 1458.
27 M. Woski and N. W. Mitzel, Z. Naturforsch., 2004, 59b, 269.
28 (a) J. C. Huffman and W. E. Steib, Chem. Commun., 1971, 917; (b) E.
L. Amma and R. E. Rundle, J. Am. Chem. Soc., 1958, 80, 4141; (c) A.
J. Blake and S. Cradock, J. Chem. Soc., Dalton Trans., 1990, 2393;
(d) G. S. Mc Grady, J. F. C. Turner, R. M. Ibberson and M. Prager,
Organometallics, 2000, 19, 4398.
˚
29 M. Zimmermann, N. A. Frøystein, A. Fischbach, P. Sirsch, H. M.
Dietrich, K. W. To¨rnroos, E. Herdtweck and R. Anwander, Chem.–
Eur. J., 2007, 13, 8784.
13 L. C. H. Gerber, E. Le, Roux, K. W. To¨rnroos and R. Anwander,
Chem.–Eur. J., 2008, 14, 9555.
30 A. D. Becke, Phys. Rev., 1988, A38, 3098.
31 All calculations have been performed using the TURBOMOLE
program package (Version 7.1): R. Ahlrichs, M. Ba¨r, M. Ha¨ser, H.
Horn and C. Ko¨lmel, Chem. Phys. Lett., 1989, 162, 165. The geometry
optimisations were done at RI-DFT(BP86) level of theory using the
default SV(P) basis sets for all elements and the default 28 electron
core potential for Y. Additionally both structures were optimised using
the cosmo model; (A. Scha¨fer, H. Horn and R. Ahlrichs, J. Chem.
Phys., 1992, 97, 2571). In order to model solid state effects an infinite
14 R. Litlabø, M. Zimmermann, K. Saliu, J. Takats, K. W. To¨rnroos and
R. Anwander, Angew. Chem., Int. Ed., 2008, 47, 9560, (Angew. Chem.,
Int. Ed., 2008, 120, 9702).
15 W. J. Evans, R. Anwander and J. W. Ziller, Organometallics, 1995, 14,
1107.
16 D. Bojer, I. Kamps, X. Tian, A. Hepp, T. Pape, R. Fro¨hlich and N. W.
Mitzel, Angew. Chem., 2007, 119, 4254, (Angew. Chem., Int. Ed., 2007,
46, 4176).
5764 | Dalton Trans., 2009, 5755–5765
This journal is
The Royal Society of Chemistry 2009
©