M. E. Farkas et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3919–3923
3923
Table 4
all four Watson–Crick base pairs and add an additional element for
DNA recognition.
Melting temperatures of DNA/ polyamide complexes
DNA = 50-CTATGGTA GAC-30
Acknowledgments
Polyamide
—
Tm (°C)
D
Tm (°C)
45.1 ( 0.1)
55.1 ( 0.2)
—
We are grateful to the National Institutes of Health for research
support. We thank David M. Chenoweth for helpful discussions.
Mass spectrometry analyses were performed in the Mass Spec-
trometry Facility of the Division of Chemistry and Chemical Engi-
neering at the California Institute of Technology.
6R
7R
6S
7S
10.0
8.3
5.8
7.9
53.4 ( 0.2)
50.9 (+0.2)
53.0 ( 0.2)
Supplementary data
Supplementary data associated with this article can be found, in
All values are derived from at least three melting temperature experiments, with
standard deviations indicated in parentheses.
DTm values are given as Tm (DNA/
polyamide) ꢁ Tm (DNA).
References and notes
1. Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215.
Table 5
2. Dervan, P. B.; Edelson, B. S. Curr. Opin. Struct. Biol. 2003, 13, 284.
3. Best, T. P.; Edelson, B. S.; Nickols, N. G.; Dervan, P. B. Proc. Natl. Acad. Sci. U.S.A.
2003, 100, 12063.
4. Edelson, B. S.; Best, T. P.; Olenyuk, B.; Nickols, N. G.; Doss, R. M.; Foister, S.;
Heckel, A.; Dervan, P. B. Nucleic Acids Res. 2004, 32, 2802.
5. Olenyuk, B. Z.; Zhang, G. J.; Klco, J. M.; Nickols, N. G.; Kaelin, W. G.; Dervan, P. B.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16768.
6. Kageyama, Y.; Sugiyama, H.; Ayame, H.; Iwai, A.; Fujii, Y.; Huang, L. E.; Kizaka-
Kondoh, S.; Hiraoka, M.; Kihara, K. Acta Oncol. 2006, 45, 317.
7. Fukuda, N.; Ueno, T.; Tahira, Y.; Ayame, H.; Zhang, W.; Bando, T.; Sugiyama, H.;
Saito, S.; Matsumoto, K.; Mugishima, H.; Serie, K. J. Am. Soc. Nephrol. 2006, 17,
422.
Relative binding affinities for polyamides
R1,R2
TꢀA
AꢀT
CꢀG
GꢀC
OH, H
F,H
1.0
1.0
1.0
1.0
1.0
0.8
<0.01
<0.01
1.4
<0.01
<0.01
0.8
H, OH
H, F
1.3
0.6
0.6
<0.01
8. Nickols, N. G.; Dervan, P. B. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10418.
9. Nickols, N. G.; Jacobs, C. S.; Farkas, M. E.; Dervan, P. B. ACS Chem. Biol. 2007, 2,
561.
10. Matsuda, H.; Fukuda, N.; Yao, E. H.; Ueno, T.; Sugiyama, H.; Matsumoto, K. J.
Hypertens. 2008, 26, S197.
11. Kielkopf, C. L.; Baird, E. E.; Dervan, P. D.; Rees, D. C. Nat. Struct. Biol. 1998, 5, 104.
12. White, S.; Szewczyk, J. W.; Turner, J. M.; Baird, E. E.; Dervan, P. B. Nature 1998,
391, 468.
Relative binding affinities are reported as ratios of binding affinities (Ka) as deter-
mined by DNase I footprinting titration experiments for polyamides targeting 50-
WGGWW-30 Sites containing GꢀC at the hairpin position have relative affinities
<0.01 (not shown).
13. Pelton, J. G.; Wemmer, D. E. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 5723.
14. Hsu, C. F.; Phillips, J. W.; Trauger, J. W.; Farkas, M. E.; Belitsky, J. M.; Heckel, A.;
Olenyuk, B. Z.; Puckett, J. W.; Wang, C. C. C.; Dervan, P. B. Tetrahedron 2007, 63,
6146.
15. Mrksich, M.; Parks, M. E.; Dervan, P. B. J. Am. Chem. Soc. 1994, 116, 7983.
16. Herman, D. M.; Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. 1998, 120, 1382.
17. Zhang, W.; Minoshima, M.; Sugiyama, H. J. Am. Chem. Soc. 2006, 128, 14905.
18. Farkas, M. E.; Tsai, S. M.; Dervan, P. B. Bioorg. Med. Chem. 2007, 15, 6927.
19. Gellman, S. H.; Adams, B. R.; Dado, G. P. J. Am. Chem. Soc. 1990, 112, 460.
20. Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X. L.; Barchi,
J. J.; Gellman, S. H. Nature 1997, 387, 381.
21. Gellman, S. H. Accounts Chem. Res. 1998, 31, 173.
22. Dose, C.; Farkas, M. E.; Chenoweth, D. M.; Dervan, P. B. J. Am. Chem. Soc. 2008,
130, 6859.
23. Brenowitz, M.; Senear, D. F.; Shea, M. A.; Ackers, G. K. Methods Enzymol. 1986,
130, 132.
24. Senear, D. F.; Dalmaweiszhausz, D. D.; Brenowitz, M. Electrophoresis 1993, 14,
704.
25. Trauger, J. W.; Dervan, P. B. Methods Enzymol. 2001, 340, 450.
26. Pilch, D. S.; Poklar, N.; Gelfand, C. A.; Law, S. M.; Breslauer, K. J.; Baird, E. E.;
Dervan, P. B. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8306.
27. Pilch, D. S.; Poklar, N.; Baird, E. E.; Dervan, P. B.; Breslauer, K. J. Biochemistry
1999, 38, 2143.
28. Trauger, J. W.; Baird, E. E.; Dervan, P. B. Nature 1996, 82, 559.
29. Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. 1996, 118, 6141.
30. Busby, G. W. Ph.D. Thesis, Harvard University, 1974, pp 48–54.
31. Hoshi, H.; Aburaki, S.; Iimura, S.; Yamasaki, T.; Naito, T.; Kawaguchi, H. J.
Antibiot. 1990, 43, 858.
hairpin polyamides targeting the DNA sequence 50-WWGGWW-30
(Fig. 5). Polyamides were synthesized on Pam resin using standard
solid phase methods.
Thermal stabilization analysis of the polyamides on an 11mer
DNA duplex revealed that fluoro and hydroxyl substituted hairpins
resulted in lower stabilizations than the corresponding amine-
substituted and acetylated polyamides (Table 4, Supplementary
Table 3). DNase I footprinting titrations on the plasmid pCDMF6
(Fig. 3, Supplementary Fig. 5) showed that both enantiomers of
the hydroxyl and fluoro-hairpin turns resulted in decreased poly-
amide binding affinities relative to their amine substituted coun-
terparts (Supplementary Table 4). Additionally, none of these
subunits resulted in increased elements of specificity at the turn
position of the molecule (Table 5).
By utilizing six-ring hairpin polyamides, we were able to com-
bine DNase I footprinting titration and duplex stabilization analy-
ses in order to fully characterize the binding preferences of various
hairpin turn subunits. Although the hairpin turns investigated
herein show modest DNA binding specificities, we anticipate that
further study will yield moieties enabling discrimination amongst