Enantioselective Aza-Henry Reaction with Acyclic Guanidine-Thiourea
COMMUNICATIONS
5843; b) N. Nishiwaki, K. R. Knudsen, K. V. Gothelf,
K. A. Jørgensen, Angew. Chem. 2001, 113, 3080;
Angew. Chem. Int. Ed. 2001, 40, 2992; c) A. Lee, W.
Kim, J. Lee, T. Hyeon, B. M. Kim, Tetrahedron: Asym-
metry 2004, 15, 2595; d) K. R. Knudsen, K. A. Jørgen-
sen, Org. Biomol. Chem. 2005, 3, 1362; e) J. C. Ander-
son, G. P. Howell, R. M. Lawrence, C. J. Wilson, J. Org.
Chem. 2005, 70, 5665; f) F. Gao, J. Y. Zhu, M. Deng, C.
Qian, Chirality 2006, 18, 741; g) C. Palomo, M. Oiar-
bide, R. Halder, A. Laso, R. Lopez, Angew. Chem.
2006, 118, 123; Angew. Chem. Int. Ed. 2006, 45, 117;
h) B. M. Trost, D. W. Lupton, Org. Lett. 2007, 9, 2023;
i) S. Handa, V. Gnanadesikan, S. Matsunaga, M. Shiba-
saki, J. Am. Chem. Soc. 2007, 129, 4900; j) H. Zhou, D.
Peng, B. Qin, Z. Hou, X. Liu, X. Feng, J. Org. Chem.
2007, 72, 10302.
ic imines also proceeded with extremely high selectiv-
ities.
Experimental Section
Typical Procedure for Enantioselective Aza-Henry
Reaction
To a mixture of (S,S)-1d (4.8 mg, 5 mmol), Cs2CO3 (32.6 mg,
0.1 mmol) and imine (2a) (21.2 mg, 0.1 mmol) in THF
(1 mL) was added nitromethane (3a) (54 mL, 1.0 mmol) at
À108C. The resulting mixture was stirred vigorously at
À108C for 30 min. To the reaction mixture was added satu-
rated aqueous NH4Cl, and the organic layer was extracted
with ethyl acetate. The extracts were dried over MgSO4, fil-
tered and concentrated under vacuum. The residue was pu-
rified by column chromatography on silica gel (n-hexane/
ethyl acetate=50:1 to 25:1) to give nitroamine 4a; yield:
25.3 mg (92%). The enantiomeric excess of 4a (96% ee) was
determined by means of chiral HPLC analysis [Chiral AD-
H, 0.46 cm (f)ꢂ25 cm (L), n-hexane/2-propanol=90:10,
0.8 mLminÀ1, major; 12.3 min, minor; 9.4 min].[7a]
[5] a) T. Okino, S. Nakamura, T. Furukawa, Y. Takemoto,
Org. Lett. 2004, 6, 625; b) X. Xu, T. Furukawa, T.
Okino, H. Miyabe, Y. Takemoto, Chem. Eur. J. 2006,
12, 466.
[6] a) B. M. Nugent, R. A. Yoder, J. N. Johnston, J. Am.
Chem. Soc. 2004, 126, 3418; b) A. S. Singh, R. A.
Yoder, B. Shen, J. N. Johnston, J. Am. Chem. Soc. 2007,
129, 3466; c) A. Singh, J. N. Johnston, J. Am. Chem.
Soc. 2008, 130, 5866.
[7] a) F. Fini, V. Sgarzani, D. Pettersen, R. P. Herrera, L.
Bernardi, A. Ricci, Angew. Chem. 2005, 117, 8189;
Angew. Chem. Int. Ed. 2005, 44, 7975; b) C. Palomo,
M. Oiarbide, A. Laso, R. Lopez, J. Am. Chem. Soc.
2005, 127, 17622; c) L. Bernardi, F. Fini, R. P. Herrera,
A. Ricci, V. Sgarzani, Tetrahedron 2006, 62, 375;
d) C. M. Bode, A. Ting, S. E. Schaus, Tetrahedron 2006,
62, 11499; e) E. Gomez-Bengoa, A. Linden, R. Lopez,
I. Mugica-Mendiola, M. Oiarbide, C. Palomo, J. Am.
Chem. Soc. 2008, 130, 7955.
[8] a) T. P. Yoon, E. N. Jacobsen, Angew. Chem. 2005, 117,
470; Angew. Chem. Int. Ed. 2005, 44, 466; b) M. T.
Robak, M. Trincado, J. A. Ellman, J. Am. Chem. Soc.
2007, 129, 15110; c) C. Wang, Z. Zhou, C. Tang, Org.
Lett. 2008, 10, 1707; d) C.-J. Wang, X.-Q. Dong, Z.-H.
Zhang, Z.-Y. Xue, H.-L. Teng, J. Am. Chem. Soc. 2008,
130, 8606; e) C. Rampalakos, W. D. Wulff, Adv. Synth.
Catal. 2008, 350, 1785.
Acknowledgements
This research was supported in part by grants from Uehara
Memorial Foundation and the Nagase Science and Technolo-
gy Foundation.
References
[1] For recent advances on this reaction, see: a) B. Wester-
mann, Angew. Chem. 2003, 115, 161; Angew. Chem. Int.
Ed. 2003, 42, 151; b) L. Bemardi, B. F. Bonini, E.
Capito, G. Dessole, M. Comes-Franchini, A. Ricci, J.
Org. Chem. 2004, 69, 8168; c) J. C. Anderson, A. J.
Blake, G. P. Howell, C. Wilson, J. Org. Chem. 2005, 70,
549; d) A. Ting, S. E. Schaus, Eur. J. Org. Chem. 2007,
5797.
[2] a) D. H. Lloyd, D. E. Nichols, J. Org. Chem. 1986, 51,
4294; b) A. G. M. Barrett, C. D. Spilling, Tetrahedron
Lett. 1988, 29, 5733; c) M. S. Sturgess, D. J. Yarberry,
Tetrahedron Lett. 1993, 34, 4743; d) H. Adams, J. C.
Anderson, S. Peace, A. M. K. Pennell, J. Org. Chem.
1998, 63, 9932; e) D. Lucet, T. Le Gall, C. Mioskowski,
Angew. Chem. 1998, 110, 2724; Angew. Chem. Int. Ed.
1998, 37, 2580; f) R. Ballini, M. Petrini, Tetrahedron
2004, 60, 1017; g) R. Ballini, A. Palmieri, P. Righi, Tet-
rahedron 2007, 63, 12099.
[3] a) K. Yamada, S. J. Harwood, H. Groger, M. Shibasaki,
Angew. Chem. 1999, 111, 3713; Angew. Chem. Int. Ed.
1999, 38, 3504; b) K. Yamada, G. Moll, M. Shibasaki,
Synlett 2001, 980; c) N. Tsuritani, K. Yamada, N. Yoshi-
kawa, M. Shibasaki, Chem. Lett. 2002, 276.
[9] a) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Adv.
Synth. Catal. 2005, 347, 1643; b) Y. Sohtome, N. Take-
mura, T. Iguchi, Y. Hashimoto, K. Nagasawa, Synlett
2006, 144; c) Y. Sohtome, Y. Hashimoto, K. Nagasawa,
Eur. J. Org. Chem. 2006, 2894; d) Y. Sohtome, N. Take-
mura, K. Takada, R. Takagi, T. Iguchi, K. Nagasawa,
Chem. Asian J. 2007, 2, 1150; e) K. Takada, N. Take-
mura, K. Cho, Y. Sohtome, K. Nagasawa, Tetrahedron
Lett. 2008, 49, 1623.
[10] Aromatic and aliphatic imines 2a–2g were prepared by
following the literature procedure, see: J. Song, Y.
Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 6048.
Under these conditions, isomerization was not ob-
served.[11]
[11] T. Mecozzi, M. Petrini, Synlett 2000, 73.
[4] a) K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V.
Gothelf, K. A. Jørgensen, J. Am. Chem. Soc. 2001, 123,
Adv. Synth. Catal. 2009, 351, 345 – 347
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
347