4-Amino-3-hexadecyloxynitrobenzene (8)
125; 118; 104; 68,9; 43.0; 30.3; 23.1; 14.0. IR (cm-1, KBr): 537,
660, 863, 997, 1012, 1270, 1405, 1472, 1601, 2852, 2918. MS-TOF
m/z (%): 781 (100), 360 (50). Elemental analysis: Calculated for
C48H84N4O4·2H20 (M = 817.2 g mol-1): C, 70.50; H, 10.77; N, 6.85;
O, 11.75. Found: C, 71.13; H, 10.41; N, 6.82; O, 9.66%.
This compound was prepared in 95% yield starting from 2-amino-
5-nitrophenol analogously to 4. 1H-NMR (CDCl3):7.80 (dd, 1H,
J1 = 2.28 Hz, J2 = 8.67 Hz); 7.67 (d, 1H, J= 2.28 Hz); 6.65 (d, 1H,
J = 8.67 Hz); 4.09 (t, 2H, J = 6.39 Hz); 1.87 (q, 2H, J = 6.7 Hz);
1.26 (s, 26H); 0.88 (t, 3H, J = 0.2 Hz). 13C-NMR(CDCl3):146.3;
139.0; 138.5; 118.9; 111.7; 106.61; 68.9; 31.9; 22.7; 14.1. ESI-MS
m/z (%) 379 (100, M + H+).
Conclusion
We have prepared a zwitterionic gemini surfactant based on a
photosensitive azobenzene scaffold that exhibits slow thermally-
activated Z-E isomerization. The latter property has allowed us
to prepare vesicles from photostationary mixtures enriched in the
more soluble Z isomer. In these aggregates, thermal isomerization
to the E isomer is slow compared to fluid solution. In the absence
of light, the vesicles are stable over several weeks, but can be
ruptured by irradiation with a low-power lamp.
4-Dimethylamino-3-hexadecyloxynitrobenzene (9)
A round-bottom flask equipped with a magnetic stirrer and fitted
with a reflux condenser and a septum is loaded under nitrogen
with 8 (0.25 g, 0.66 mmol), K2CO3 (0.45 g, 3.3 mmol), a catalytic
amount of 18-crown-6, and 15 mL of dry DMF. Methyl iodide
(41 mL, 4.0 mmol) is added through the septum and the mixture
is heated to 90 ◦C with stirring for 24 hrs. The DMF is then
removed under vacuum and the oily residue is taken up in
dichloromethane, washed with water, and dried over MgSO4. The
solvents are evaporated on a rotary evaporator and the waxy solid
thus obtained is carefully purified by column chromatography
(diethylether:pentane 1:9) to afford 9 (0.1 g) as a yellow solid in
Acknowledgements
Financial support from the CNRS, the French Ministry of Re-
search and Asian development bank is gratefully acknowledged.
1
Notes and references
40% yield. H-NMR (CDCl3): 7.83 (dd, 1H, J1 = 2.15 Hz, J2 =
8.85 Hz); 7.67 (d, 1H, J = 2.15 Hz); 6.75 (d, 1H, J = 8.85 Hz);
4.05 (t, 2H, J = 6.40 Hz); 1.87 (q, 2H, J = 6.7 Hz); 1.26 (s, 26H);
0.88 (t, 3H, J = 0.2 Hz). 13C-NMR (CDCl3):144.3; 139.0; 138.5;
118.9; 111.7; 106.6; 68.9; 43.9; 31.9; 22.7; 14.1. SM (FAB+) m/z
(%): 407 (M + 1, 100).
1 (a) M. Haubs and H. Ringsdorf, Angew. Chem. Int. Ed. Engl., 1985,
24, 882; (b) I. R. Dunkin, A. Gittinger, D. C. Sherrington and P. J.
Wittaker, J. Chem. Soc. Chem. Commun., 1994, 2245; (c) Z. Li and
A. G. Kutateladze, J. Org. Chem., 2003, 68, 8236; (d) J. Eastoe, M. S.
Dominguez, H. Cumber, P. Wyatt and R. K. Heenan, Langmuir,
2004, 20, 1120; (e) T. Kunitake, N. Nakashima, M. Shimomura and
Y. Okahata, J.Am. Chem. Soc., 1980, 102, 6642; (f) T. Kunitake, Y.
Okahata, M. Shimomura, S. Yasunami and K. Takarabe, J. Am. Chem.
Soc., 1981, 103, 5401; (g) W. F. Mooney, P. E. Brown, J. C. Russel,
S. B. Costa, L. G. Pedersen and D. G. Whitten, J. Am. Chem. Soc.,
1984, 106, 5659; (h) D. A. Holden, H. Ringsdorf, V. Deblauwe and G.
Smets, J. Phys.Chem., 1984, 88, 716; (i) K. Nishiyama and M. Fujihira,
Chem. Lett., 1988, 1257; (j) S. D. Evans, S. R. Johnson, H. Ringsdorf,
L. M. Williams and H. Wolf, Langmuir, 1998, 14, 6436; (k) H. C.
Kang, B. M. Lee, J. Yoon and M. Yoon, J. Colloid Interface Sci., 2000,
231, 255; (l) J. Eastoe; and A. Vesperinas, Soft Matter, 2005, 1, 338;
(m) M. Irie, AdV. Polym. Sci., 1993, 110, 49–65; (n) B. L. Feringa, R. A.
Van Delden, N. Koumura and E. L. Geertsema, Chem.Rev., 2000, 100,
1789.
2 (a) C. T. Lee Jr., K. A. Smith and T. A. Hatton, Macromolecules,
2004, 37, 5397; (b) K. Murata, M. Aoki, T. Suzuki Takaaki Harada,
H. Kawabata, T. Komori, F. Ohseto, K. Ueda and S. Shinkai, J. Am.
Chem. Soc., 1994, 116, 6664; (c) M. Ayabe, T. Kishida, N. Fujita, K.
Sada and S. Shinkai, Org. Biomol. Chem., 2003, 1, 2744.
3 (a) O. Karthaus, M. Shimomura, M. Hioki, R. Tahara and H.
Nakamura, J. Am. Chem. Soc., 1996, 118, 9174; (b) J. Eastoe, M.
Sanchez-Dominguez, P. Wyatt, A. Beeby and R. K. Heenan, Langmuir,
2002, 18, 7837.
4,4¢-Bis(dimethylamino)-3,3¢-bis(hexadecyloxy)-azobenzene (10)
Compound 10 was obtained analogously to 5 in 30% yield from
9. 1H-NMR (CDCl3): 7.50 (dd, 1H, J1 = 1.85 Hz, J2 = 8.25 Hz);
7.43 (d, 1H, J = 1.85 Hz); 6.95 (d, 1H, J = 8.25 Hz); 4.11 (t, 2H,
J = 6.70 Hz); 1.87 (q, 2H, J = 6.7 Hz); 1.26 (s, 26H); 0.88 (t, 3H,
J = 0.2 Hz). 13C-NMR (CDCl3): 143.7; 142.6; 132.4; 115.2; 114.0;
109.3; 72.3; 43.9; 30.3; 23.1; 14.0.
4,4¢-Bis(dimethylamineoxide)-3,3¢-bis(hexadecyloxy)-azobenzene
(2)
In a two-necked round-bottomed flask fitted with a septum and
a nitrogen inlet is placed 10 (1 equiv.) dissolved in CHCl3. The
solution is cooled to -5 ◦C and a solution of m-CPBA (2 equiv.)
◦
in CHCl3 (also cooled to -5 C) is added drop-wise through the
septum. The reaction is allowed to warm to rt and is stirred is
continued for 12 hrs. The volatile components are removed on a
rotary evaporator and the residue is taken up in dichloromethane,
washed with water, and dried over MgSO4. The solution is
concentrated on a rotary evaporator and triturated with pentane.
The solid thus obtained is filtered and dried under vacuum to
give 2 as a red-brown solid in 20% yield (mp = 158–160 ◦C). 1H-
NMR (CDCl3): E-2: 9.02 (d, 1H, J = 8.55 Hz); 7.73 (dd, 1H, J1 =
8.55 Hz, J2 = 1.82 Hz); 7.51 (d, 1H, J = 1.82 Hz); 4.25 (t, 2H,
J = 5 Hz); 3.73 (s, 6H); 1.94 (q, 2H, J = 7.3 Hz); 1.26 (s, 13H);
0.88 (t, 3H, J = 0.2 Hz), Z-2: 8.68 (d, 1H, J = 8.55 Hz); 6.66 (d,
1H, J = 1.82 Hz); 6.29 (dd, 1H, J1 = 8.55 Hz, J2 = 1.82 Hz); 4.00
(t, 2H, J = 5 Hz); 3.61 (s, 6H); 1.94 (q, 2H, J = 7.3 Hz); 1.26 (s,
13H); 0.88 (t, 3H, J = 0.2 Hz). 13C-NMR (CDCl3): 153; 150; 140;
4 H. Sakai, A. Matsumura, S. Yokoyama, T. Saji and M. Abe, J. Phys.
Chem. B, 1999, 103, 10737.
5 Y. Orihara, A. Matsumura, Y. Saito, N. Ogawa, T. Saji, A. Yamaguchi,
H. Sakai and M. Abe, Langmuir, 2001, 17, 6072.
6 J. Y. Shin and N. L. Abbott, Langmuir, 1999, 15, 4404.
7 T. Shang Kenneth, A. Smith and T. A. Hatton, Langmuir, 2003, 19,
10764.
8 (a) D. Faure, J. Gravier, T. Labrot, B. Desbat, R. Oda and D. M.
Bassani, Chem. Commun., 2005, 1167; (b) M. Geoffroy, D. Faure,
R. Oda, D. M. Bassani and D. Baigl, ChemBioChem., 2008, 9,
2382.
9 (a) M. Irie and H. Tanaka, Macromolecules, 1983, 16, 210; (b) F.
Ciardelli, O. Pieroni and A. Fissi, J. Chem. Soc. Chem. Commun., 1986,
264; (c) R. Kroger, H. Menzel and M. L. Hallensleben, Macromol.
Chem. Phys., 1994, 195, 2291; (d) C. T. Lee, K. A. Smith and T. A.
Hatton, Macromolecules, 2004, 37, 5397.
10 CaChe (Fujitsu Molecular) software package.
3178 | Org. Biomol. Chem., 2009, 7, 3173–3178
This journal is
The Royal Society of Chemistry 2009
©