10832 J. Phys. Chem. A, Vol. 113, No. 40, 2009
Odom et al.
(16) Corrêa, D. S.; Oliveira, S. L.; Misoguti, L.; Zilio, S. C.; Aroca,
R. F.; Constantino, C. J. L.; Mendonça, C. R. J. Phys. Chem. A 2006, 110,
6433.
(17) Boni, L. D.; Constantino, C. J. L.; Misoguti, L.; Aroca, R. F.; Zilio,
S. C.; Mendonça, C. R. Chem. Phys. Lett. 2003, 371, 744.
(18) Gao, B.; Lu, C.; Xu, J.; Meng, F.; Cui, Y.; Tian, H. Chem. Lett.
2006, 35, 1416.
(19) Gosztola, D.; Niemczyk, M. P.; Wasielewski, M. R. J. Am. Chem.
Soc. 1998, 120, 5118.
(20) Hayes, R. T.; Wasielewski, M. R.; Gosztola, M. J. J. Am. Chem.
Soc. 2000, 122, 5563.
(21) Kelley, R. F.; Shin, W. S.; Rybtchinski, B.; Sinks, L. E.;
Wasielewski, M. R. J. Am. Chem. Soc. 2007, 129, 3173.
(22) Prodi, A.; Chiorboli, C.; Scandola, F.; Iengo, E.; Alessio, E.;
Dobrawa, R.; Wu¨rthner, F. J. Am. Chem. Soc. 2005, 127, 1454.
(23) Chen, Y.; Lin, Y.; EI-Khouly, M. E.; Zhuang, X.; Araki, Y.; Ito,
O.; Zhang, W J. Phys. Chem. C 2007, 111, 16096.
(24) van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss,
E. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582.
(25) Kazmaier, P. M.; Hoffmann, R. J. J. Am. Chem. Soc. 1994, 116,
9684.
(34) Patoux, C.; Coudret, C.; Launay, J. P.; Joachim, C.; Gourdon, A.
Inorg. Chem. 1997, 36, 5037.
(35) Frampton, M. J.; Akdas, H.; Cowley, A. R.; Rogers, J. E.; Slagle,
J. E.; Fleitz, P. A.; Drobizhev, M.; Rebane, A.; Anderson, H. L. Org. Lett.
2005, 7, 5365.
(36) Screen, T. E. O.; Blake, I. M.; Rees, L. H.; Clegg, W.; Borwick,
S. J.; Anderson, H. L. J. Chem. Soc., Perkin Trans. 1 2002, 320.
(37) Sutton, J. E.; Taube, H. Inorg. Chem. 1981, 20, 3125.
(38) Shoaee, S.; Eng, M. P.; An, Z.; Zhang, X.; Barlow, S.; Marder,
S. R.; Durrant, J. R. Chem. Commun. 2008, 40, 4915.
(39) Huang, J.; Fu, H.; Wu, F.; Chen, S.; Shen, F.; Zhao, X.; Liu, Y.;
Yao, J. J. Phys. Chem. C 2008, 112, 2689.
(40) Huang, J.; Wu, Y.; Fu, H.; Zhan, X.; Yao, J.; Barlow, S.; Marder,
S. R. J. Phys. Chem. A 2009, 113, 5039.
(41) From kinetic fitting of the data transient absorption spectra of 1 in
1% pyridine in dichloromethane with excitation at 414 nm, the following
time constants were obtained: τR ) 3.3 ( 0.5 ps and τD ) 12.5 ( 3.0 ps.
(42) Connelly, N. G.; Geiger, W. E. Chem. ReV. 1996, 96, 877.
(43) Toluene, the solvent primarily used for the transient absorption
spectra, is a poor solvent for ionic species, while dichloromethane was
chosen due to our previous observations that some radical cations are
considerably more persistent in chlorinated solvents than other polar
solvents. See: Coropceanu, V.; Gruhn, N. E.; Barlow, S.; Lambert, C.;
Durivage, J. C.; Bill, T. G; No¨ll, G.; Marder, S. R; Bre´das, J.-L. J. Am.
Chem. Soc. 2004, 126, 2727.
(44) The reduction of cobaltocenium species to the corresponding
cobaltocenes is not fully reversible in dichloromethane. See: Barlow, S.
Inorg. Chem. 2001, 40, 7047.
(45) Additionally, as evidenced by the solvent dependence of the spectra
of the neutral compound 1 (see Figure S3 in the Supporting Information),
it is expected that some peaks have different shapes and energies of
maximum absorption due to the different solvent environments used for
each experiment.
(26) Jime´nez, A. J.; Spa¨nig, F.; Salome Rodr´ıguez-Morgade, M.;
Ohkubo, K.; Fukuzumi, S.; Guldi, D. M.; Torres, T. Org. Lett. 2007, 9,
2481.
(27) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73.
(28) Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.;
Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y. S.;
McCord-Maughon, D.; Qin, J.; Rockel, H.; Rumi, M.; Wu, X.-L.; Marder,
S. R.; Perry, J. W. Nature 1999, 398, 51.
(29) Spangler, C. W. J. Mater. Chem. 1999, 9, 2013.
(30) In both conformers, the PDI core is nonplanar, and the two POR
groups are noncoplanar with the PDI, presumably due to steric interactions
between the core and the substituents; one conformer is referred to as “bent”
and the other as “twisted” (Figure S6, Supporting Information). Since the
choice of conformer has only a limited effect on the calculated properties
(such as the orbital structure and energies) and the twisted conformer
resembles the experimental geometry of a disubstituted PDI derivative, the
specific results discussed below refer to the twisted geometry (see the
Supporting Information for the details of both geometries).
(31) The energy at which the low-energy absorption feature of 1 is
observed is relatively insensitive to the solvent; however, the line shape
does vary with the solvent. Three representative spectra (acquired in solvents
containing 1% pyridine to prevent aggregation of the POR moieties) are
shown in Figure S3, Supporting Information.
(46) Karotki, A.; Drobizhev, M.; Dzenis, Y.; Taylor, P. N.; Anderson,
H. L.; Rebane, A. Phys. Chem. Chem. Phys. 2004, 6, 7.
(47) Drobizhev, M.; Stepanenko, V.; Dzenis, Y.; Karotki, A.; Rebane,
A.; Taylor, P. N.; Anderson, H. L. J. Phys. Chem. B 2005, 109, 7223.
(48) Odom, S. A.; Webster, S.; Padilha, L. A.; Peceli, D.; Hu, H.; Nootz,
G.; Chung, S.-J.; Ohira, S.; Matichak, J. D.; Przhonska, O. V.; Kachkovski,
A. D.; Barlow, S.; Bre´das, J. L.; Anderson, H. L.; Hagan, D. J.; Van
Stryland, E. W.; Marder, S. R. J. Am. Chem. Soc. 2009, 131, 7510.
(49) Examples of D-A POR-perylenemonoimide derivatives exhibiting
significant ground-state coupling have been studied: Kirmaier, C.; Yang,
S. I.; Prathapan, S.; Miller, M. A.; Diers, J. R.; Bocian, D. F.; Lindsey,
J. S.; Holten, D. Res. Chem. Intermed. 2002, 28, 719–740. Yang, S. I.;
Lammi, R. K.; Prathapan, S.; Miller, M. A.; Seth, J.; Diers, J. R.; Bocian,
D. F.; Lindsey, J. S.; Holten, D. J. Mater. Chem. 2001, 11, 2420–2430.
(32) An, Z.; Odom, S. A.; Kelley, R. F.; Huang, C.; Zhan, X.; Barlow,
S.; Padilha, L. A.; Fu, J.; Webster, S.; Hagan, D. J.; Van Stryland, E. W.;
Wasielewski, M. R.; Marder, S. R. J. Phys. Chem. A 2009, 113, 5585.
(33) LeVanda, C.; Bechgaard, K.; Cowan, D. O. J. Org. Chem. 1976,
41, 2700.
JP905214G