5054
M. J. Matos et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5053–5055
24 h (Scheme 1). Compounds 3,8 427 and 528 were obtained in
yields of 61%, 53%, and 59%, respectively. The reaction mixture
was purified by flash chromatography, using hexane/ethyl acetate,
in a proportion of 9:1, as eluent.
The p-methoxy derivative 3 was hydrolyzed with hydriodic
acid, in the presence of acetic acid and acetic anhydride, at
110 °C, for 5 h (Scheme 1). The residue was purified by crystalliza-
tion of acetonitrile, and the phenol derivative 629 was obtained
with a yield of 63%.
of them present activity in the low nanomolar range. The introduc-
tion of one meta methoxy group in the 3-phenyl ring improves sev-
eral times the MAO-B inhibitory activity in respect to ortho and
para positions. Compound 4 is about 24 times more active that
R-(ꢀ)-deprenyl, and several times more selective than this drug.
The hydrolysis of methoxy groups is not a strategy to get better
MAOI activity. These studied modifications can interestingly im-
prove the pharmacologic potential of the 3-phenylcoumarins in
the treatment of Parkinson’s disease.
MAO inhibiting activity of compounds 3-6 was evaluated
in vitro by the measurement of the enzymatic activity of human re-
combinant MAO isoforms in BTI insect cells infected with baculo-
virus.8 Then, the IC50 values and MAO-B selectivity ratio [IC50
(MAO-A)]/[IC50 (MAO-B)] for inhibitory effects of both new com-
pounds and reference inhibitors were calculated (Table 1).30
Acknowledgments
Thanks to the Spanish Ministerio de Sanidad y Consumo
(PI061457 and PI061537) and to Xunta da Galicia (BTF20303PR,
PXIB203022PR, and CSA019203PR) and Fondazione Banco Sarde-
gna (Italy) for financial support. M.J.M. also thanks MIUR for a
PhD grant.
The resveratrol–coumarin hybrid compounds 3, 4, and
6
showed high selectivity for the MAO-B isoenzyme and inhibitory
activity in the nano to picomolar range. Compound 4 was the most
active compound of this series, making the meta methoxy position
the most interesting position at which to improve the MAO-B-
inhibiting activity. Compound 5 has no MAOI activity up to the
highest tested concentration, proving that the methoxy group in
the ortho position is not favorable to the measured enzymatic inhi-
bition. Changes on the methoxy substituent position on the phenyl
ring in coumarin’s 3 position can modulate the pharmacologic po-
tential of the synthesized coumarins.
Comparing compound 3 with its hydroxyl derivative 6, it was
shown that the hydrolysis of methoxy groups is not, in this case,
a strategy to improve the MAOI activity. The IC50 of compound 6
for inhibition of MAO-B activity is approximately 10 times bigger
than compound 3. However, this value is also in the nanomolar
range, and the molecule is also a potent MAOI, selective for the
MAO-B isoenzyme.
References and notes
1. Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem.
2005, 12, 887.
2. Hoult, J. R. S.; Payá, M. Gen. Pharmacol. 1996, 27, 713.
3. Kontogiorgis, C.; Hadjipavlou-Litina, D. J. Enzyme Inhib. Med. Chem. 2003, 18, 63.
4. Kabeya, L.; Marchi, A.; Kanashiro, A.; Lopes, N.; Silva, C.; Pupo, M.; Lucisano-
Valim, Y. Bioorg. Med. Chem. 2007, 15, 1516.
5. Carotti, A.; Altomare, C.; Catto, M.; Gnerre, C.; Summo, L.; De Marco, A.; Rose, S.;
Jenner, P.; Testa, B. Chem. Biod. 2006, 3, 134.
6. Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.;
Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L.; Meggio, F.; Moro,
S. J. Med. Chem. 2008, 51, 752.
7. Santana, L.; Uriarte, E.; González-Díaz, H.; Zagotto, G.; Soto-Otero, R.; Méndez-
Álvarez, E. J. Med. Chem. 2006, 49, 1118.
8. Matos, M. J.; Viña, D.; Quezada, E.; Picciau, C.; Delogu, G.; Orallo, F.; Santana, L.;
Uriarte, E. Bioorg. Med. Chem. Lett. 2009, 19, 3268.
9. Santana, L.; González-Díaz, H.; Quezada, E.; Uriarte, E.; Yáñez, M.; Viña, D.;
Orallo, F. J. Med. Chem. 2008, 51, 6740.
10. Gnerre, C.; Catto, M.; Leonetti, F.; Weber, P.; Carrupt, P.; Altomare, C.; Carotti,
A.; Testa, B. J. Med. Chem. 2000, 43, 4747.
11. Catto, M.; Nicolotti, O.; Leonetti, F.; Carotti, A.; Favia, A.; Soto-Otero, R.;
Méndez-Álvarez, E.; Carotti, A. J. Med. Chem. 2006, 49, 4912.
12. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Bizzarri, B.; Granese, A.;
Carradori, S.; Yanez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. J. Med. Chem. 2009, 52,
1935.
13. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini,
P.; Alacaro, S.; Ortuso, F. Bioorg. Med. Chem. Lett. 2004, 14, 3697.
14. Geha, R. M.; Rebrin, I.; Chen, K.; Shih, J. C. J. Biol. Chem. 2001, 276, 9877.
15. Johnston, J. P. Biochem. Pharmacol. 1968, 17, 1285.
16. Grimsby, J.; Lan, N. C.; Neve, R.; Chen, K.; Shih, J. C. J. Neurochem. 1990, 55,
1166.
17. Harfenist, H.; Heuseur, D. J.; Joyner, C. T.; Batchelor, J. F.; White, H. L. J. Med.
Chem. 1996, 39, 1857.
18. Frémont, L. Life Sci. 2000, 66, 663.
19. Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yánez, M.; Fraiz, N.; Alcaide, C.;
Cano, E.; Orallo, F. Bioorg. Med. Chem. Lett. 2006, 16, 257.
20. Orallo, F. In Resveratrol in Health and Disease; Aggarwal, B. B., Shishodia, S., Eds.;
CRC Press: USA, 2005; p 577.
21. Leiro, J.; Álvarez, E.; Arranz, J.; Laguna, R.; Uriarte, E.; Orallo, F. J. Leukocyte Biol.
2004, 75, 1156.
In conclusion, the synthesized resveratrol–coumarin hybrid
compounds show high selectivity for the MAO-B isoenzyme. Most
R
HO
O
Me
CHO
OH
Me
a
O
O
OMe
1
2
3: R = p-OMe
4: R = m-OMe
5: R = o-OMe
b
6: R = p-OH
Scheme 1. Reagents and conditions: (a) DCC, DMSO, 110 °C, 24 h; (b) HI, AcOH,
Ac2O, 110 °C, 5 h.
22. Orallo, F. Curr. Med. Chem. 2008, 15, 1887.
23. De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 12684.
Table 1
24. Yánez, M.; Fraiz, N.; Cano, E.; Orallo, F. Biochem. Biophys. Res. Commun. 2006,
344, 688.
MAO-A and MAO-B inhibition by the prepared compounds 3–6 and for the reference
compounds
25. Vilar, S.; Quezada, E.; Alcaide, C.; Orallo, F.; Santana, L.; Uriarte, E. Qsar Comb.
Sci. 2007, 26, 317.
Compounds
MAO-A IC50
MAO-B IC50
Ratio
´
26. Kamat, S. P.; DSouza, A. M.; Paknikar, S. K.; Beaucahmp, P. S. J. Chem. Res. (S)
*
*
*
*
3
4
5
6
13.05 0.90 nM
>7663b
2002, 242.
802.60 53.75 pM
>124,595b
27. 3-(30-Methoxy)phenyl-6-methylcumarin (4): It was obtained with a yield of 53%.
Mp 84–85 °C. 1H NMR (CDCl3) d (ppm), J (Hz): 2.44 (s, 3H, –CH3), 3.88 (s, 1H, –
OCH3), 6.97 (m, 1H, H-40), 7.26–7.42 (m, 6H, H-5, H-7, H-8, H-20, H-50 and H-60)
7.78 (s, 1H, H-4). 13C NMR (CDCl3) d (ppm): 20.77, 55.37, 114.15, 114.38,
116.10, 119.28, 120.86, 127.70, 129.43, 132.48, 134.12, 136.12, 139.91, 140.10,
151.60, 159.45 160.66. MS m/z (%): 267 (48), 266 (M+, 100), 239 (16), 238 (70),
237 (20), 195 (48), 194 (16), 166 (10), 165 (29), 152 (23). Anal. Calcd for
C17H14O3: C, 76.68; H, 5.30. Found: C, 76.76; H, 5.21.
*
155.59 17.09 nM
19.60 0.86 nM
7.54 0.36 lM
>643b
3431
0.87
R-(ꢀ)-Deprenyl
67.25 1.02 l
Ma
6.56 0.76
Iproniazid
lM
*
Inactive at 100 lM (highest concentration tested). At higher concentrations the
compounds precipitate.
a
28. 3-(20-Methoxy)phenyl-6-methylcumarin (5): It was obtained with a yield of 59%.
Mp 177–178 °C. 1H NMR (CDCl3) d (ppm), J (Hz): 2.41 (s, 3H, –CH3), 3.82 (s, 1H,
–OCH3), 7.02 (m, 2H, H-30, H-40), 7.24–7.41 (m, 5H, H-5, H-7, H-8, H-50 and H-
60) 7.69 (s, 1H, H-4). 13C NMR (CDCl3) d (ppm): 20.80, 55.81, 111.31, 116.21,
P
<0.01 versus the corresponding IC50 values obtained against MAO-B, as
determined by ANOVA/Dunnett’s.
b
Values obtained under the assumption that the corresponding IC50 against
MAO-A is the highest concentration tested (100 lM).