C. Lee et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4538–4541
4541
Table 1
which two different substituents, arylmethyl and catechol, are at-
tached on opposite ends. The synthesized dihydroxychromones
showed selective inhibition against duplex DNA-unwinding activ-
ity of SARS-CoV NTPase/helicase. Moreover, the inhibitory activity
was enhanced by combination of the two spatially separated sub-
stituents, which indicates two different binding sites in the target
enzyme. Taken together, an extended feature of the pharmaco-
phore model was proposed which is constituted of a diketoacid
core, a hydrophobic arylmethyl substituent, and a free catechol
unit. Further structure–activity study around the proposed phar-
macophore model is warranted for discovery of more potent inhib-
itors of SARS-CoV NTPase/helicase.
IC50 values of flavonol derivatives against SARS-CoV helicase ATPase activity and
duplex DNA-unwinding activity
Acknowledgments
This work was supported by a grant of the Korea Healthcare
technology R&D Project, Ministry for Health, Welfare & Family
Affairs, Republic of Korea (A08-4628-AA2023-08N1-00010A), a
grant from ORP 11-30-68 (NIAS), and a grant from Biogreen 21
(Korea Ministry of Agriculture and Forestry). Y.-J. Jeong was sup-
ported by the Korea Research Foundation Grant funded by the Kor-
ean Government (KRF-2008-313-C00531) and the research
program 2009 of Kookmin University in Korea.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Peiris, J. S.; Lai, S. T.; Poon, L. L.; Guan, Y.; Yam, L. Y.; Lim, W.; Nicholls, J.;
Yee, W. K.; Yan, W. W.; Cheung, M. T.; Cheng, V. C.; Chan, K. H.; Tsang, D. N.;
Yung, R. W.; Ng, T. K. Lancet 2003, 361, 1319; (b) Drosten, C.; Gunther, S.;
Preiser, W.; van der Werf, S.; Brodt, H. R.; Becker, S.; Rabenau, H.; Panning, M.;
Kolesnikova, L.; Fouchier, R. A.; Berger, A.; Burguiere, A. M.; Cinatl, J.; Eickmann,
M.; Escriou, N. N. Engl. J. Med. 2003, 348, 1967.
3. Lee, C.; Lee, J. M.; Lee, N. R.; Jin, B. S.; Jang, K. J.; Kim, D. E.; Jeong, Y. J.; Chong, Y.
Bioorg. Med. Chem. Lett. 2009, 19, 1636.
4. (a) Kliger, Y.; Levanon, E. Y.; Gerber, D. Drug Discovery Today 2005, 10, 345; (b)
Yang, N.; Tanner, J. A.; Wang, Z.; Huang, J. D.; Zheng, B. J.; Zhu, N.; Sun, H. Chem.
Commun. 2007, 4413; (c) Kesel, A. J. Anti-Infective Agents Med. Chem. 2006,
5, 161.
5. Spedding, G.; Ratty, A.; Middleton, E., Jr. Antiviral Res. 1989, 12, 99.
6. (a) Morel, I.; Lescoat, G.; Cogrel, P.; Sergent, O.; Pasdeloup, N.; Brissot, P.;
Cillard, P.; Cillard, J. Biochem. Pharmacol. 1993, 4, 13; (b) Van Acker, S. A. B. E.;
Van den Berg, D. J.; Tromp, M. N. J. L.; Griffoen, D. H.; van Bennekom, W. P.; van
der Vijjgh, W. J. F.; Bast, A. Free Radical Biol. Med. 1996, 20, 331; (c) Chiang, L. C.;
Chiang, W.; Liu, M. C.; Lin, C. C. J. Antimicrob. Chmother. 2003, 52, 194; (d)
Formica, J. V.; Regelson, W. Food Chem. Toxicol. 1995, 33, 1061.
7. Prakash, O.; Pundeer, R.; Kaur, H. Synthesis 2003, 18, 2768.
8. Wollenweber, E.; Iinuma, M.; Tanaka, T.; Mizuno, M. Phytochemistry 1990, 29,
633.
Compds
IC50
(l
M)
ATPase
Duplex DNA-unwinding
2a
2b
2c
3a
3b
4a
4b
4c
4d
4e
4f
>50
>50
>50
>50
>50
20.9 0.5
>50
25.4 1.5
>50
>50
>50
>50
>50
8.1 0.3
>50
4.1 0.3
5.2 0.4
2.7 0.1
9.3 0.4
15.4 0.8
8.1 0.3
42.9 5.4
9. Hauteville, M.; Chadenson, M.; Chopin, J. Bull. Soc. Chim. Fr. 1979, 11, 124.
10. Caldwell, S. T.; Petersson, H. M.; Farrugia, L. J.; Mullen, W.; Crozier, A.; Hartley,
R. C. Tetrahedron 2006, 62, 7257.
11. Li, M.; Han, X.; Yu, B. J. Org. Chem. 2003, 68, 6842.
12. See Supplementary data for experimental and characterization data for the
final compounds (2a–2c, 3b, and 4a–4f) as well as previously unreported
intermediates.
13. (a) Baykov, A. A.; Evtushenko, O. A.; Avaeva, S. M. Anal. Biochem. 1988, 171, 266;
(b) Wardell, A. D.; Errington, W.; Ciaramella, G.; Merson, J.; McGarvey, M. J. J.
Gen. Virol. 1999, 80, 701; (c) Martin, G. R.; Yvette, M. N.; Chrisotomos, P.;
Laurence, H. P.; Paul, W.; Wynne, A. Anal. Biochem. 2004, 327, 176.
14. Jang, K. J.; Lee, N. R.; Yeo, W. S.; Jeong, Y. J.; Kim, D. E. Biochem. Biophys. Res.
Commun. 2008, 366, 738.
15. Yang, N.; Tanner, J. A.; Wang, Z.; Huang, J. D.; Zheng, B. J.; Zhu, N.; Zun, H. Chem.
Commun. 2007, 4413.
Figure 3. The proposed pharmacophore model of SARS-CoV helicase inhibitors.