C O M M U N I C A T I O N S
Supporting Information Available: Experimental procedures,
1
characterization H/13C NMR spectra. This material is available free
References
(1) For recent reviews, see: (a) Ajamian, A.; Gleason, J. L. Angew. Chem.,
Int. Ed. 2004, 43, 3754. (b) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem.
Soc. ReV. 2004, 33, 302. (c) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.;
Bazan, G. C. Chem. ReV. 2005, 105, 1001. (d) Chapman, C. J.; Frost, C. G.
Synthesis 2007, 1. (e) Enders, D.; Grondal, C.; Hu¨ttl, M. R. M. Angew.
Chem., Int. Ed. 2007, 46, 1570. (f) Walji, A. M.; MacMillan, D. W. C.
Synlett 2007, 1477. (g) Xinhong, Y.; Wang, W. Org. Biomol. Chem. 2008,
6, 2037.
(2) For select recent examples, see: (a) Enders, D.; Hu¨ttl, M. R. M.; Grondal,
C.; Raabe, G. Nature 2006, 441, 861. (b) Marigo, M.; Bertelsen, S.; Landa,
A.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 5475. (c) Enders, D.;
Narine, A. A.; Benninghaus, T.; Raabe, G. Synlett 2007, 1667. (d) Wang,
J.; Li, H.; Xie, H.-X.; Zu, L.-S.; Shen, X.; Wang, W. Angew. Chem., Int.
Ed. 2007, 46, 9050. (e) Zu, L.-S.; Li, H.; Xie, H.-X.; Wang, J.; Jiang, W.;
Tang, Y.; Wang, W. Angew. Chem., Int. Ed. 2007, 46, 3732. (f) Hayashi,
Y.; Toyoshima, M.; Gotoh, H.; Ishikawa, H. Org. Lett. 2009, 11, 45. (g)
Ishikawa, H.; Suzuki, T.; Hayashi, Y. Angew. Chem., Int. Ed. 2009, 48,
1304. (h) Zu, L.; Zhang, S.; Xie, H.; Wang, W. Org. Lett. 2009, 11, 1627.
(i) Jiang, H.; Elsner, P.; Jensen, K. L.; Falcicchio, A.; Marcos, V.; Jørgensen,
K. A. Angew. Chem., Int. Ed. 2009, 48, 6844.
(3) Cernak, T. A.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 3124.
(4) For select recent examples, see: (a) Huang, Y.; Walji, A. M.; Larsen, C. H.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051. (b) Simmons,
B.; Walji, A. M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2009, 48,
4349.
Figure 1. One-pot cascade reaction monitored by GC analysis utilizing
20 mol % 5, 10 mol % 6, 10 mol % NaOAc, with 1 equiv of acetylacetone
3 and crotonaldehyde 4a in CHCl3 (0.2 M) at 22 °C.
To lend further credence to this hypothesis, we monitored the
reaction between acetylacetone and crotonaldehyde by withdrawing
aliquots at regular intervals (Figure 1). The GC data reveal only
moderate buildup of intermediate aldehyde 11 and continuous
formation of product, indicating both catalytic cycles are operating
concurrently. The lower yield observed for cyclopentanone 7a
obtained from the stepwise process (46% vs 93% in the one-step
process) suggests a symbiotic relationship between the two catalysts
wherein both catalysts function more efficiently in the presence of
each other than they do independently. This type of reactivity
highlights the power of the multicatalytic cascade process wherein
the one-pot reaction actually outperforms the sequential process,
allowing for reactivity that is otherwise not easily accessible.
Finally, in an effort to probe the possibility of controlling the
regioselectivity of unsymmetrical 1,3-diketones, 1-benzoyl-acetone
12 was subjected to the reaction conditions (eq 3). To our delight
the desired product was obtained in 74% yield, 87% ee in a ratio
of 4:1 (major: the sum of all other potential regioisomers and
diastereomers). It seems that sterics play a more significant role
than eletronics in the carbene catalyzed intramolecular benzoin
reaction, since the sterically smaller methyl ketone reacts prefer-
entially over the larger yet more electrophilic phenyl ketone.
(5) (a) Erkkila¨, A.; Majander, I.; Pihko, P. M. Chem. ReV. 2007, 107, 5416.
(b) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. ReV. 2007,
107, 5471.
(6) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem.
Res. 2004, 37, 621.
(7) (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. ReV. 2007, 107, 5606.
(b) Moore, J. L.; Rovis, T. Top. Curr. Chem. 2009, 291.
(8) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796.
(9) (a) Brandau, S.; Landa, A.; Franze´n, J.; Marigo, M.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2006, 45, 4305. (b) Carlone, A.; Cabrera, S.; Marigo,
M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1101. (c) Carlone,
A.; Marigo, M.; North, C.; Landa, A.; Jørgensen, K. A. Chem. Commun.
2006, 4928. (d) Rueping, M.; Sugiono, E.; Merino, E. Chem.sEur. J. 2008,
14, 6329. (e) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem.,
Int. Ed. 2009, 48, 3699.
(10) (a) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2003, 42, 661. (b) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2004, 43, 1272. (c) Halland, N.; Hansen, T.; Jørgensen,
K. A. Angew. Chem., Int. Ed. 2003, 42, 4955. (d) Knudsen, K. R.; Mitchell,
C. E. T.; Ley, S. V. Chem. Commun. 2006, 66.
(11) For recent references on the crossed aldehyde-ketone benzoin reaction, see:
(a) Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125,
8432. (b) Enders, D.; Niemeier, O. Synlett 2004, 2111. (c) Enders, D.;
Niemeier, O.; Balensiefer, T. Angew. Chem., Int. Ed. 2006, 45, 1463. (d)
Takikawa, H.; Hachisu, Y.; Bode, J. W.; Suzuki, K. Angew. Chem., Int.
Ed. 2006, 45, 3492. (e) Takikawa, H.; Suzuki, K. Org. Lett. 2007, 9, 2713.
(12) Ide, W. S.; Buck, J. S. Org. React. 1948, 4, 269.
(13) (a) Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407. (b) Read de Alaniz,
J.; Rovis, T. Synlett. 2009, 1189.
(14) (a) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004,
126, 9518. (b) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127,
16406. (c) Vora, H. U.; Moncecchi, J. R.; Epstein, O.; Rovis, T. J. Org.
Chem. 2008, 73, 9727.
(15) (a) Chow, K. Y.-K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126. (b)
Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370.
(c) Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873.
(16) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2005, 44, 794 Also see: Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji,
M. Angew. Chem., Int. Ed. 2005, 44, 4212.
(17) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem. 2005, 70, 5725.
(18) Addition of 10 mol % sodium acetate to the first step results in similar
yield and enantioselectivity. We also observed that carrying out the reaction
in a stepwise manner led to more complex reaction mixtures.
(19) See Supporting Information.
(20) General Procedure: a 1 dram vial was equipped with a magnetic stir bar
under argon and charged with catalyst 6 (0.024 mmol). CHCl3 (1 mL),
1,3-dicarbonyl (0.448 mmol), and enal (0.224 mmol) were added sequen-
tially followed by catalyst 5 (0.044 mmol) and NaOAc (0.024 mmol) in
one portion. The reaction was allowed to stir at room temperature for 14 h
at which point the reaction mixture was filtered through a short pad of
silica gel, eluted with Et2O (∼10 mL), and then concentrated in vacuo.
The resulting crude product was purified by flash silica gel chromatography.
(21) Reaction of 4a and 8a was conducted on 2.4 mmol scale using 10 mol %
5, 5 mol % 6, and 5 mol % NaOAc to afford 90% yield, 91% ee, and
identical diastereomer ratio of 10a.
In conclusion, we have developed an operationally simple single
step multicatalytic cascade process20,21 for the preparation of R-hy-
droxycyclopentanones containing three contiguous stereocenters.
The highly functionalized products are obtained from cheap, readily
available reagents in high enantioselectivities and moderate dias-
tereoselectivities. We further provide conclusive evidence that both
catalysts are mutually compatible and are operating concurrently.
Experiments aimed at extending the scope of these types of
transformations are currently underway.
Acknowledgment. We thank the NIGMS for support (GM72586).
T.R. thanks the Monfort Family Foundation for a Monfort Profes-
sorship. We thank Derek Dalton and Kevin Oberg (CSU) for solving
the crystal structures of 10d and 13. We thank a reviewer for helpful
suggestions.
JA905342E
9
13630 J. AM. CHEM. SOC. VOL. 131, NO. 38, 2009