This work was supported by the Korea Research
Foundation Grant funded by the Korean Government
(KRF-2007-331-C00162).
Notes and references
1 (a) H. Tapiero, D. M. Townsend and K. D. Tew, Biomed.
Pharmacother., 2003, 57, 386; (b) R. Uauy, M. Olivares and
M. Gonzalez, Am. J. Clin. Nutr., 1998, 67, 952S.
2 D. Strausak, J. F. B. Mercer, H. H. Dieter, W. Stremmel and
G. Multhaup, Brain Res. Bull., 2001, 55, 175.
3 (a) Y. Zheng, J. Orbulescu, X. Ji, F. M. Andreopoulos, S. M. Pham
and R. M. Leblanc, J. Am. Chem. Soc., 2003, 125, 2680;
(b) A. Torrado, G. K. Walkup and B. Imperiali, J. Am. Chem.
Soc., 1998, 120, 609; (c) K. C. Chang, L. Y. Luo, E. W. G. Diau
and W. S. Chung, Tetrahedron Lett., 2008, 49, 5013; (d) S. H. Kim,
J. S. Kim, S. M. Park and S. K. Chang, Org. Lett., 2006, 8, 371;
(e) M. Boiocchi, L. Fabbrizzi, M. Licchelli, D. Sacchi, M. Vazquez
and C. Zampa, Chem. Commun., 2003, 1812; (f) N. Shao,
Y. Zhang, S. Cheung, R. Yang, W. Chan, T. Mo, K. Li and
F. Liu, Anal. Chem., 2005, 77, 7294; (g) G. Klein, D. Kaufmann,
S. Schurch and J. L. Reymond, Chem. Commun., 2001, 561;
(h) Y. Xiang, Z. Li, X. Chen and A. Tong, Talanta, 2008, 74,
1148; (i) H. H. Zeng, R. B. Thompson, B. P. Maliwal, G. R. Fones,
J. W. Moffett and C. A. Fierke, Anal. Chem., 2003, 75, 6807;
(j) H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong,
J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, T. Joo and J. S. Kim,
J. Am. Chem. Soc., 2009, 131, 2008.
Fig. 4 Fluorescence emission spectra obtained by addition of Cu2+
(10 mM) to pH 5.0 buffer solution (acetonitrile : 0.01 M acetate buffer =
5 : 5) containing 1 (1 mM) and metal ions (100 mM). Inset: fluorescence
intensities of 1 (1 mM) in the presence of Cu2+ (10 mM) and metal ions
(100 mM).
Cu2+ (10 mM) to a buffer solution (pH 5.0) containing 1 and
100 equiv. of the other metal ions are shown in Fig. 4. The
fluorescence intensity changes caused by the addition of Cu2+
are not influenced by the presence of the other metal ions,
which may be attributed to the following reasons: (a) Cu2+
ions show higher affinities for various amine ligands than other
metal ions and (b) the hydrazone moiety was not cleaved by
other metal ions.10 It is worth mentioning that a fluorescence
enhancement similar to that in the presence of just Cu2+ ions
was achieved in the same incubation time in spite of the
presence of an excess of other metal ions.
4 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and
T. E. Rice, Chem. Rev., 1997, 97, 1515.
5 (a) J. Liu and Y. Lu, J. Am. Chem. Soc., 2007, 129, 9838;
(b) V. Dujols, F. Ford and A. W. Czarnik, J. Am. Chem. Soc.,
1997, 119, 7386; (c) Q. Wu and E. V. Anslyn, J. Am. Chem. Soc.,
2004, 126, 14682; (d) M. Royzen, Z. Dai and J. W. Canary, J. Am.
Chem. Soc., 2005, 127, 1612; (e) L. Mei, Y. Xiang, N. Li and
A. Tong, Talanta, 2007, 72, 1717; (f) Z. C. Wen, R. Yang, H. He
and Y. B. Jiang, Chem. Commun., 2006, 106; (g) Z. Liu, L. R. Lin,
R. B. Huang and L. S. Zheng, Spectrochim. Acta, Part A, 2008, 71,
1212.
In conclusion, we have proposed a new hydrazone derivative
that is easily prepared in a single step from coumarin 334,
and we have demonstrated that the hydrazone derivative is a
highly effective fluorescent sensor with strong fluorescence
enhancement in the presence of paramagnetic Cu2+ ions.
This sensor is catalytically hydrolyzed by Cu2+, and the
catalytic process induces a large increase in the fluorescence
intensity, due to signal amplification. Importantly, this
compound has high selectivity for Cu2+ over other anions;
moreover, this selectivity is retained even in the presence of an
excess of other metal ions. In addition, the detection limit
for Cu2+ is below an aqueous Cu2+ concentration of 100 nM
and this detection limit is acceptable within the US EPA
limit. Consequently, the chemodosimeter 1 can be employed
in a practical system for monitoring Cu2+ concentrations in
aqueous samples.
6 (a) R. Martınez-Manez and F. Sancenon, Coord. Chem. Rev., 2006,
´ ´ ´
250, 3081; (b) H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and
J. Yoon, Chem. Soc. Rev., 2008, 37, 1465; (c) A. Chatterjee,
M. Santra, N. Won, S. Kim, J. K. Kim, S. B. Kim and
K. H. Ahn, J. Am. Chem. Soc., 2009, 131, 2040; (d) Y. K. Yang,
K. J. Yook and J. Tae, J. Am. Chem. Soc., 2005, 127, 16760;
(e) B. Liu and H. Tian, Chem. Commun., 2005, 3156; (f) W. Lin,
L. Yuan and X. Cao, Tetrahedron Lett., 2008, 49, 6585; (g) R. J. T.
Houk, K. J. Wallace, H. S. Hewage and E. V. Anslyn, Tetrahedron,
2008, 64, 8271; (h) K. C. Song, J. S. Kim, S. M. Park, K. C. Chung,
S. Ahn and S. K. Chang, Org. Lett., 2006, 8, 3413; (i) J. Y. Kwon,
Y. J. Jang, Y. J. Lee, K. M. Kim, M. S. Seo, W. Nam and J. Yoon,
J. Am. Chem. Soc., 2005, 127, 10107.
7 E. J. Corey and S. Knapp, Tetrahedron Lett., 1976, 17, 3667.
8 E. Arici, A. Greiner, F. Raubacher and J. H. Wendorff, Macromol.
Chem. Phys., 2000, 201, 1679.
9 D. Y. Lee and H. C. Zheng, Plant Soil, 1994, 164, 19.
10 R. D. Hancock and A. E. Martell, Chem. Rev., 1989, 89, 1875.
ꢀc
This journal is The Royal Society of Chemistry 2009
4840 | Chem. Commun., 2009, 4838–4840