5784 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 19
Kirschberg et al.
related pyrimidinol-based HIV-1 integrase inhibitors.27 Addi-
tionally, access to the RNase H active site in the virion might be
limited. Finally and more speculatively, the overall stability of a
complex wherein the coordination geometry of metal B is
similar to that responsible for the elevation of the ground-state
energy during catalytic phosphodiester hydrolysis might be
intrinsically too low for useful levels of inhibition to be observed.
(12) Budihas, S. R.; Gorshkova, I.; Gaidamakov, S.; Wamuri, A.; Bona,
M. K.; Parniak, M. A.; Crouch, R. J.; McMahon, J. B.; Beutler, J.
A.; Le Grice, S. F. J. Selective inhibition of HIV-1 reverse tran-
scriptase-associated ribonuclease H activity by hydroxylated tro-
polones. Nucl. Acid Res. 2005, 33, 1249–1256.
(13) Didierjean, J.; Isel, C.; Querre, F.; Mouscadet, J.-F.; Aubertin, A.-
M.; Valnot, J.-Y.; Piettre, S. R.; Marquet, R. Inhibition of Human
Immunodeficiency Virus Type 1 Reverse Transcriptase, RNase H,
and Integrase Activities by Hydroxytropolones. Antimicrob.
Agents Chemother. 2005, 49, 4884–4894.
Acknowledgment. We thank Mary McGrath, Wei Huang,
and Swami Swaminathan for insightful discussions, as well as
David Cowfer, Mona Cai, Amy Kwok, James Nugteren, and
Brian Stephens for analytical support.
(14) Piettre, S. R.; Ganzhorn, A.; Hoflack, J.; Islam, K.; Hornsperger,
J.-M. R-Hydroxytropolones: A New Class of Potent Inhibitors of
Inositol Monophosphatase and Other Bimetalic Enzymes. J. Am.
Chem. Soc. 1997, 119, 3201–3204.
(15) Parkes, K. E. B.; Ermert, P.; Faessler, J.; Ives, J.; Martin, J. A.;
Merrett, J. H.; Obrecht, D.; Williams, G.; Klumpp, K. Use of a
Pharmacophore Model to Discover a New Class of Influenza
Endonuclease Inhibitors. J. Med. Chem. 2003, 46, 1153-1164.
For a second study using a constant pH of the assay and modulation
the pKa value of chelating hydroxyl groups, see ref 20.
Supporting Information Available: Experimental procedures,
analytical and spectral characterization data, crystallographic
information. This material is available free of charge via the
(16) Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. E.; Egbertson, M.
S.; Payne, L. S.; Guare, J. P.; Vacca, J. P.; Hazuda, D, J.; Felock,
P. J.; Wolfe, A. L.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.;
Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.; Lynch, J. J.;
Michelson, S. R.; Young, S. D. Design and Synthesis of 8-Hydro-
xy-[1,6]Naphthyridines as Novel Inhibitors of HIV-1 Integrase in
Vitro and in Infected Cells. J. Med. Chem. 2003, 46, 453–456.
(17) Tumey, L. N.; Bom, D.; Huck, B.; Gleason, E.; Wang, J.; Silver, D.;
Brunden, K.; Boozer, S.; Rundlett, S.; Sherf, B.; Murphy, S.; Dent, T.;
Leventhal, C.; Bailey, A.; Harrington, J.; Bennani, Y. L. The identi-
fication and optimization of N-hydroxy urea series of flap endonu-
clease 1 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 277–281.
(18) Sang, S.;Lambert, J. D.;Tian, S.;Hong, J.;Hou, Z.;Ryu, J.-H.;Stark,
R. E.; Rosen, R. T.; Huang, M.-T.; Yang, C. S.; Ho, C.-T. Enzymatic
synthesis of tea theaflavin derivatives and their anti-inflammatory and
cytotoxic activities. Bioorg. Med. Chem. 2004, 12, 459–467.
(19) (a) Summa, V.; Petrocchi, A.; Matassa, V. G.; Taliani, M.; Laufer, R.;
De Francesco, R.; Altamura, S.; Pace, P. HCV NS5b RNA-Depen-
dent RNA Polymerase Inhibitors: From R,γ-Diketoacids to 4,5-Di-
hydroxypyrimidine- or 3-Methyl-5-hydroxypyrimidinecarboxylic Acids.
Design and Synthesis. J. Med. Chem. 2004, 47, 5336–5339. (b) Summa,
V.; Petrocchi, A.; Matassa, V. G.; Gardelli, C.; Muraglia, E.; Rowley, M.;
Gonzales Paz, O.; Laufer, R.; Monteagudo, E.; Pace, P. 4,5-Dihydroxy-
pyrimidine Carboxamides and N-Alkyl-5-hydroxypyrimidinone Carbox-
amides Are Potent, Selective HIV-Integrase Inhibitors with Good Pharmaco-
kinetic Profiles in Preclinical Species. J. Med. Chem. 2006, 49, 6646–6649.
(20) Koch, U.; Attenni, B.; Malancona, S.; Colarusso, S.; Conte, I.; Di
Filippo, M.; Harper, S.; Pacini, B.; Giomini, C.; Thomas, S.; Incitti, I.;
Tomei, L.; De Francesco, R.; Altamura, S.; Matassa, V. G.; Narjes, F.
2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as Inhibitors of
Hepatitis C Virus NS5B Polymerase: Discovery, SAR, Modeling,
and Mutagenesis. J. Med. Chem. 2006, 49, 1693–1705.
(21) Parniak, M. A.; Min, K.-L.; Budihas, S. R.; Le Grice, S. F. J.; Beutler,
J. A. A fluorescence-based high-throughput screening assay for inhi-
bitors of human immunodeficiency virus-1 reverse transcriptase-
associated ribonuclease H activity. Anal. Biochem. 2003, 332, 33-39.
(22) Beilhartz, G. L.; Wendeler, M.; Baichoo, N.; Rausch, J.; Le Grice,
S.; Goette, M. HIV-1 Reverse Transcriptase Can Simultaneously
Engage Its DNA/RNA Substrate at Both DNA Polymerase and
RNase H Active Sites: Implications for RNase H Inhibition.
J. Mol. Biol. 2009, 388, 462–474.
(23) (a) Davies, J. F., II; Hostomska, Z.; Hostomsky, Z.; Jordan, S. R.;
Matthews, D. A. Crystal Structure of the Ribonuclease H Domain
of HIV-1 Reverse Transcriptase. Science 1991, 252, 88–95.
(b) Cowan, J. A.; Ohyama, T.; Howard, K.; Rausch, J.; Cowan, S. M.
L.; Le Grice, S. F. J. Metal-ion stoichiometry of the HIV-1 RT
ribonuclease H domain: evidence for two mutually exclusive sites leads
to new mechanistic insights on metal-mediated hydrolysis in nucleic
acid biochemistry. J. Biol. Inorg. Chem. 2000, 5, 67–74.
References
(1) Flexner, C. HIV drug development: the next 25 years. Nature Rev.
Drug Discovery 2007, 6, 959–966.
(2) (a) Champoux, J. J. Roles of ribonuclease H in reverse transcrip-
tion. In Reverse Transcriptase Skalka, A. M., Goff, S. P., Eds.; Cold
Spring Harbor Press: Plain View, NY, 1993; pp 103-118. (b) Tanese,
N.; Telesnitsky, A.; Goff, S. P. Abortive reverse transcription by mutants
of Moloney murine leukemia virus deficient in the reverse transcriptase
associated RNase H function. J. Virol. 1991, 65 4387-4397, and
references cited within.
(3) Klumpp, K.; Mirzadegan, T. Recent Progress in the Design of
Small Molecule Inhibitors of HIV RNase H. Curr. Pharm. Des.
2006, 12, 1909–1922.
(4) Loya, S.; Tal, R.; Kashman, Y.; Hizi, A. Illimaquinone, a Selective
Inhibitor of the RNase H Activity of Human Immunodeficiency
Virus Type 1 Reverse Transcriptase. Antimicrob. Agents Chemo-
ther. 1990, 34, 2009–2012.
(5) Hang, J. Q.; Li, Y.; Yang, Y.; Cammack, N.; Mirzadegan, T.;
Klumpp, K. Substrate-dependent inhibition or stimulation of HIV
RNase H activity by non-nucleoside reverse transcriptase inhibitors
(NNRTIs). Biochem. Biophys. Res. Commun. 2007, 352, 341–350.
(6) Nowotny, M.; Gaidamakov, S. A.; Crouch, R. J.; Yang, W. Crystal
Structure of RNase H Bound to an RNA/DNA Hybrid: Substrate
Specificity and Metal-Dependent Catalysis. Cell 2005, 121, 1005–1016.
(7) Klumpp, K.; Hang, J. Q.; Rajendran, S.; Yang, Y.; Derosier, A.; In,
P. W. K.; Overton, H.; Parkes, K. E. B.; Cammack, N.; Martin,
J. A. Two-metal ion mechanism of RNA cleavage by HIV RNase H
and mechanism-based design of selective RNase H inhibitors.
Nucleic Acid Res. 2003, 31, 6852–6859.
(8) Recently, additional scaffolds have been added: (a) Williams, P. D.;
Staas, D. D.; Venkatraman, S.; Booth, T. M.; Loughran, H. M.;
Ruzek, R. D.; Wai, J. S.; Vacca, J. P.; Prasad, S.; Munshi, S. K.;
Bahnck, C.; Dornadula, G.; Hrin, R. C.; Himmelberger, A. L.;
Miller, M. D.; Hazuda, D. J.; Grobler, J. A. Inhibitors of the
RNase H Activity of Reverse Transcriptase as an Approach to New
HIV-1 Antiretroviral Agents. 16th Conference on Retroviruses and
Opportunistic Infections, Montreal, February 8-11, 2009.
(b) Fuji, H.; Urano, E.; Futahashi, Y.; Hamatake, M.; Tatsumi,
J.; Hoshino, T.; Morikawa, Y.; Yamamoto, N.; Komano, J.
Derivatives of 5-Nitro-furan-2-carboxylic Acid Carbamoylmethyl
Ester Inhibit RNase H Activity Associated with HIV-1 Reverse
Transcriptase. J. Med. Chem. 2009, 52, 1380–1387.
(9) Kirschberg, T.; Parrish, J. Metal chelators as antiviral agents. Curr.
Opin. Drug Discovery Dev. 2007, 10, 460–472.
(10) Shaw-Reid, C. A.; Feuston, B.; Munshi, V.; Getty, K.; Krueger, J.;
Hazuda, D. J.; Parniak, M. A.; Miller, M. D.; Lewis, D. Dissecting
the Effects of DNA Polymerase and Ribonuclease H Inhibitor
Combinations on HIV-1 Reverse-Transcriptase Activities. Bio-
chemistry 2005, 44, 1595–1606, and references cited within.
(11) (a) Hang, J. Q.; Rajendran, S.; Yang, Y.; Li, Y.; In, P. W. K.;
Overton, H.; Parkes, K. E.B.; Cammack, N.; Martin, J. A.;
Klumpp, K. Activity of the isolated HIV-RNase H domain and
specific inhibition by N-hydroxyimides. Biochem. Biophys. Res.
Commun. 2004, 317, 321–329. (b) Additionally: Billamboz, M.; Bailly,
F.; Barreca, M. L.; De Luca, L.; Mouscadet, J.-F.; Calmels, C.;
Andreola, M.-l.; Witvrouw, M.; Christ, F.; Debyser, Z.; Cotelle, P.
Design, Synthesis, and Biological Evaluation of a Series of 2-Hydroxy-
isoquinoline-1,3(2H,4H)-diones as Dual Inhibitors of Human Immu-
nodeficiency Virus Type 1 Integrase and the Reverse Transcriptase
RNase H Domain. J. Med. Chem. 2008, 51, 7717–7730.
(24) Yang, W. An equivalent metal ion in one- and two-metal-ion
catalysis. Nature Struct. Mol. Biol. 2008, 15, 1228–1231.
(25) Bock, C. W.; Kaufman, K. A.; Markham, G. D.; Glusker, J. P. Man-
ganese as a replacement for magnesium and zinc: Functional compar-
ison of the divalent ions. J. Am. Chem. Soc. 1999, 121, 7360–7372.
(26) The structural work in reference 3 shows many similarities, yet
crystallographic data for detailed comparison are currently unavailable.
(27) Pace, P.; Di Francesco, M. E.; Gardelli, C.; Harper, S.; Muraglia,
E.; Nizi, E.; Orvieto, F.; Petrocchi, A.; Poma, M.; Rowley, M.;
Scarpelli, R.; Laufer, R.; Gonzales Paz, O.; Monteagudo, E.;
Bonelli, F.; Hazuda, D.; Stillmock, K. A.; Summa, V. Dihydroxy-
pyrimidine-4-carboxamides as Novel Potent and Selective HIV
Integrase Inhibitors. J. Med. Chem. 2007, 50, 2225–2239.