reductive elimination [via 5],14,15 thereby formerly constitut-
ing a [3 + 2] cycloaddition. Given that there have been no
studies on cyclopropenations of ynamides,1,16 we explored
this process and report here our success in the synthesis of
highly substituted 2-amido-furans via a Rh(II)-catalyzed
cyclopropenation of ynamides.
Scheme 1. Possible Cyclopropenations of Ynamides
Initial cyclopropenation attempts were carried out employ-
ing ethyl R-diazoacetate with either well-known metal
catalysts8-13 such as Rh2(OAc)4 and Cu(OTf)2 or newer
Rh(II) catalysts such as Rh2(capy)417 and Dubois’ catalyst18
(Scheme 2). These attempts led to a range of low-yielding
Scheme 2. Initial Attempts with Ethyl R-Diazoacetate
while the latter can in fact serve as intermediates en route
to cyclopropenes 2 or provide metallo-oxocyclohexadiene 5
without actually proceeding through a cyclopropenation
process.
While it is difficult to precisely distinguish the two
pathways, we were interested in the possibility of observing
the actual cyclopropenes 2, which can be synthetically useful
as demonstrated by an array of elegant work that has
appeared in the recent literature.8,11-13 Although cyclopro-
penations of alkynes have already been beautifully demon-
strated as a practical entry to cyclopropenes,8,11-13 accessing
2 could be challenging because with the amide substitution
the ring-opening pathway leading to 1,3-dipoles 4 would be
expedited even without the metal assistance.
products, which included 2-amido-furan 8, cyclopentadiene
9, and diene 10.19 However, amido-cyclopropene 11 was not
one of them.20 The formation of cyclopentadiene 9 could
be readily rationalized through a [3 + 2] cycloaddition of
zwitterion 12 along with an ensuing 1,5-H-shift to rearrange
the conjugation (Scheme 3).21 On the other hand, diene 10
could be derived from 2-amido-furan 8 through a second
On the other hand, we were equally intrigued by either
metal bound zwitterionic intermediates 3a and 3b or
nonmetal bound 4, as both could afford synthetically useful
2-amido-furans 6, respectively, via 5-dig-cyclization and
(9) For reviews on cyclopropanations via metal-catalyzed decompositions
of diazo-esters, see: (a) Doyle, M. P. Chem. ReV. 1986, 86, 919. (b) Padwa,
A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385. (c) Calter, M. A. Curr.
Org. Chem. 1997, 1, 37. (d) Doyle, M. P.; Forbe, D. C. Chem. ReV. 1998,
98, 911. (e) Davies, H. M. L.; Autoulinakis, E. Org. React. 2003, 57, 1. (f)
Maas, G. Chem. Soc. ReV. 2004, 33, 183. (g) Doyle, M. P. J. Org. Chem.
(14) For earlier documentations of furan formation from cyclopropena-
tion processes, see: (a) Cho, S. K.; Liebeskind, L. S. J. Org. Chem. 1987,
52, 2631. (b) Davies, H. M. L.; Romines, K. R. Tetrahedron 1988, 44,
3343. (c) Mu¨ller, P.; Pautx, N.; Doyle, M. P.; Baheri, V. HelV. Chim. Acta
1990, 73, 1233. (d) Hoye, T. R.; Dinsmore, C. J.; Johnson, D. S.; Korkowski,
P. F. J. Org. Chem. 1990, 55, 4518. (e) Padwa, A.; Kassir, J. M.; Xu, S. L.
J. Org. Chem. 1991, 56, 6971. (f) Fairfax, D. J.; Austin, D. J.; Xu, S. L.;
2006, 71, 9253
.
(10) Also see: Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis With Diazo Compounds; John Wiley and
Sons, Inc., 1998; Chapter 4 and references therein.
(11) For recent informative reviews on cyclopropene synthesis and its
chemistry: (a) Marek, I.; Simaan, S.; Masarwa, A. Angew. Chem., Int. Ed.
2007, 46, 7364. (b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. ReV.
2007, 107, 3117. (c) Rubin, M.; Rubina, M.; Gevorgyan, V. Synthesis 2006,
1221. (d) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719. (e) Baird,
M. S. Chem. ReV. 2003, 103, 1271. (f) Walsh, R. Chem. Soc. ReV. 2005,
34, 714. (g) Dolbier, W. R., Jr.; Battiste, M. A. Chem. ReV. 2003, 103,
Padwa, A. J. Chem. Soc., Perkin Trans. 1 1992, 2837.
(15) For recent examples of synthesizing furans from cyclopropenations,
see: (a) Zhao, L.-B.; Guan, Z.-H.; Han, Y.; Xie, Y.-X.; He, S.; Liang, Y.-
M. J. Org. Chem. 2007, 72, 10276. (b) Ma, S.; Lu, L.; Lu, P. J. Org. Chem.
2005, 70, 1063. (c) Rubin, M.; Gevorgyan, V. Synthesis 2004, 796. (d)
Padwa, A.; Straub, C. S. J. Org. Chem. 2003, 68, 227. (e) For an example
of using iodonium ylide C see: Lee, Y. R.; Yoon, S. H. Synth. Commun.
1071
.
2006, 36, 1941.
(12) For earlier reviews, see: (a) Deem, M. L. Synthesis 1972, 675. (b)
Billups, W. E.; Haley, M. M.; Lee, G.-A. Chem. ReV. 1989, 89, 1147. (c)
(16) For alone example of pyrrole-substituted ynamine-cyclopropenation,
see: Pirrung, M. C.; Zhang, J.; Morehead, A. T., Jr. Tetrahedron Lett. 1994,
35, 6229.
Padwa, A.; Fryxell, G. E. AdV. Strain Org. Chem. 1991, 1, 117
.
(13) For leading examples on cyclopropenations of alkynes and recent
chemistry of cyclopropenes, see: (a) Panne, P.; Fox, J. M. J. Am. Chem.
Soc. 2007, 129, 22. (b) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9,
4463. (c) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew Chem., Int.
Ed. 2007, 46, 4757. Yang, Z.; Xie, X.; Fox, J. M. Angew. Chem., Int. Ed.
2006, 45, 3960. (d) Rubin, M.; Gevorgyan, V. Synthesis 2004, 796. (e)
Davis, H. M.; Lee, G. H. Org. Lett. 2004, 6, 1233. (f) Doyle, M. P.; Hu,
W. Tetrahedron Lett. 2000, 41, 6265. (g) Doyle, M. P.; Ene, D. G.; Forbes,
D. C.; Pillow, T. H. Chem. Commun. 1999, 1691. (h) Mu¨ller, P.; Imogai,
H. Tetrahedron: Asymmetry 1998, 9, 4419. (i) Padwa, A.; Kassir, J. M.;
(17) Rh2(capy)4: dirhodium(II) tetrakis(caprolactam). For leading refer-
ences, see: (a) Doyle, M. P.; Peterson, C. S.; Protopopova, M. N.; Marnett,
A. B.; Parker, D. L., Jr.; Ene, D. G.; Lynch, V. J. Am. Chem. Soc. 1997,
119, 8826. (b) Padwa, A.; Austin, D. J.; Hornbuckle, S. F.; Semones, M. A.;
Doyle, M. P.; Protopopova, M. N. J. Am. Chem. Soc. 1992, 114, 1874.
(18) Dubois’ catalyst: Bis[rhodium(RR, R′,R′-tetramethyl-1,3-benzene-
dipropionic acid)]. For a leading reference, see: Espino, C. G.; Fiori, K. W.;
Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378.
(19) See Supporting Information.
(20) As suggested by a referee, we are currently attempting to detect
possible formation of cyclopropenes at low temp using NMR.
Xu, S. L. J. Org. Chem. 1997, 62, 1642
.
Org. Lett., Vol. 11, No. 19, 2009
4463