9624 Inorganic Chemistry, Vol. 48, No. 20, 2009
Zang et al.
Bis-dithiolate metal ion-pair complexes have been actively
studied for a long time as a wide range of conducting and
magnetic materials as well as nonlinear optical materials.11,12
Experimental and theoretical investigations indicated that
the unusual physical properties in such kinds of ion-pair
complexes originate from the intermolecular interactions of
bis-dithiolate metal anions; as a result, the anionic stacking
pattern strongly influences the physical properties of the
materials. It is notable that the structural features of the
countercation play an important role in tuning the stacking
pattern of bis-dithiolate metal anions.13-15 We have recently
obtained a series of quasi-one-dimensional molecular mate-
rials that are [Ni(mnt)2]--based (where mnt2- = maleonitri-
ledithiolate) with interesting magnetic behaviors, such as
spin-Peierls-like transition, ferromagnetic ordering, and me-
tamagnetic transformation, employing benzylpyridinium
derivatives with λ-shaped and flexible molecular conforma-
tions to adjust the packing pattern of [Ni(mnt)2]- anions in
crystals.13
Scheme 1. Molecular Structure of [NO2bzql][Ni(dmit)2]
block employed for the construction of molecular magnetic
materials apart from its well-known electric conductivity.14,15
In comparison with the [Ni(mnt)2]- complex, the existence of
versatile intermolecular S S contacts in the crystal of the
3 3 3
[Ni(dmit)2]- complex (for example, head-to-head and lateral-
to-lateral S S contacts between [Ni(dmit)2]- anions besides
3 3 3
face-to-face S S contacts often observed in the crystal of
3 3 3
[Ni(mnt)2]- complex could serve as valid cooperative effects in
molecular magnetic or conducting materials) probably give
hysteretic loops; on the other hand, the [Ni(dmit)2]- com-
plexes exhibit a rich polymorphism14,15 (which can be defined
as a chemical substance possessing at least two different
arrangements in the crystalline solid state,17,18 giving rise to
materials with different physical properties).
Most recently, we extended our previous studies of
the series of [Ni(mnt)2]- complexes and focused our
research attention on [Ni(dmit)2]- complexes,16 because the
[Ni(dmit)2]- anion is the analog of [Ni(mnt)2]- (both anions
possess planar molecular geometry and delocalized electronic
structure with S = 1/2 spin) and also is an excellent building
Herein, we report four ion-pair complexes of [Ni(dmit)2]-
with[NO2bzql]þ (NO2bzqlþ = 1-(4-nitrobenzyl)quinolinium,
and for its molecular structure, see Scheme 1). [NO2bzql]-
(11) (a) Nakamura, T.; Akutagawa, T.; Honda, K.; Vnderhils, A. E.;
Coomber, A. T.; Friend, R. H. Nature 1998, 394, 159–162. (b) Malfant, I.;
Andreu, R.; Lacroix, P. G.; Faulmann, C.; Cassoux, P. Inorg. Chem. 1998, 37,
3361–3370. (c) Kobayashi, A.; Fujiwara, E.; Kobayashi, H. Chem. Rev. 2004,
104, 5243–5246. (d) Kobayashi, H.; Cui, H. B.; Kobayashi, A. Chem. Rev. 2004,
104, 5265–5288. (e) Kato, R. Chem. Rev. 2004, 104, 5319–5346.
(12) (a) Staniland, S. S.; Fujita, W.; Umezono, Y.; Awaga, K.; Camp, P.
J.; Clark, S. J.; Robertson, N. Inorg. Chem. 2005, 44, 546–551. (b) Dawe, L.
N.; Miglioi, J.; Turnbow, L.; Taliaferro, M. L.; Shum, W. W.; Bagnato, J. D.;
[Ni(dmit)2] (1r and 1β) and [NO2bzql][Ni(dmit)2] CH3-
3
COCH3 (2r and 2β) belong to two forms of polymorphs.
Compounds 1r, 1β, and 2r exhibit magnetic bistability, and
particularly, 1r has a wide hysteretic loop around 55 K
which, as far as we know, is a notably large thermal hysteresis
loop for transition-metal-containing molecular materials,
except for SC and cyano-bridged metal-to-metal charge-
transfer-induced spin transition (CTIST) complexes.
ꢀ
Zakharov, L. N.; Rheingold, A. L.; Arif, A. M.; Fourmigue, M.; Miller, J. S. Inorg.
ꢀ
ꢀ
Chem. 2005, 44, 7530–7539. (c) Jeannin, O.; Clerac, R.; Fourmigue, M. J. Am.
ꢀ
ꢀ
Chem. Soc. 2006, 128, 14649–14656. (d) Jeannin, O.; Clerac, R.; Fourmigue, M.
ꢀ
Chem. Mater. 2007, 19, 5946–5954. (e) Nomura, M.; Fourmigue, M. Inorg.
Chem. 2008, 47, 1301–1312.
Experimental section
(13) (a) Ren, X. M.; Meng, Q. J.; Song, Y.; Lu, C. S.; Hu, C. J.; Chen, X.
Y.; Xue, Z. L. Inorg. Chem. 2002, 41, 5931–5933. (b) Ni, Z. P.; Ren, X. M.; Ma,
J.; Xie, J. L.; Ni, C. L.; Chen, Z. D.; Meng, Q. J. J. Am. Chem. Soc. 2005, 127,
14330–14337. (c) Xie, J. L.; Ren, X. M.; Song, Y.; Zou, Y.; Meng, Q. J. J. Chem.
Soc., Dalton Trans. 2002, 2868–2872. (d) Xie, J. L.; Ren, X. M.; Gao, S.; Meng,
Q. J. Chem. Lett. 2002, 6, 576–577. (e) Xie, J. L.; Ren, X. M.; Gao, S.; Zhang, W.
W.; Li, Y. Z.; Lu, C. S.; Ni, C. L.; Liu, W. L.; Meng, Q. J.; Yao, Y. G. Eur. J. Inorg.
Chem. 2003, 2393–2396. (f) Xie, J. L.; Ren, X. M.; He, C.; Gao, Z. M.; Song, Y.;
Meng, Q. J.; Kremer, R. K. Chem. Phys. Lett. 2003, 369, 41–48. (g) Xie, J. L.;
Ren, X. M.; Song, Y.; Zhang, W. W.; Liu, W. L.; He, C.; Meng, Q. J. Chem.
Commun. 2002, 2346–2347. (h) Ren, X. M.; Meng, Q. J.; Song, Y.; Lu, C. S.; Hu,
C. J.; Chen, X. Y. Inorg. Chem. 2002, 41, 5686–5692.
(14) (a) Clemenson, P. I. Coord. Chem. Rev. 1990, 106, 171–203. (b)
Cassoux, P.; Valade, L.; Kobayashi, H.; Kobayashi, A.; Clark, R. A.; Underhill, A.
E. Coord. Chem. Rev. 1991, 110, 115–160. (c) Cassoux, P. Coord. Chem. Rev.
1999, 185-186, 213–132. (d) Kobayashi, H.; Sato, A.; Tanaka, H.; Kobayashi,
A.; Cassoux, P. Coord. Chem. Rev. 1999, 190-192, 921–932. (e) Ward, M. D.;
McCleverty, J. A. J. Chem. Soc., Dalton. Trans. 2002, 93–127. (f) Akutagawa,
T.; Nakamura, T. Coord. Chem. Rev. 2000, 198, 297–311. (g) Akutagawa, T.;
Nakamura, T. Coord. Chem. Rev. 2002, 226, 3–9. (h) Robertson, N.; Cronin, L.
Coord. Chem. Rev. 2002, 227, 93–127.
Starting Materials and Chemicals. 4,5-Bis(thiobenzoyl)-1,3-
dithiol-2-thione and [NO2bzql]Cl were prepared as described in
the literature.19,20 Other chemicals were purchased as analytical-
grade reagents.
Powder Sample. To the suspended solution of 4,5-bis-
(thiobenzoyl)-1,3-dithiol-2-thione (812 mg, 2.0 mmol) in dry
methanol (20 mL) was added sodium (92 mg, 4.0 mmol) under a
nitrogen atmosphere at room temperature. After all sodium
balls disappeared, NiCl2 6H2O (238 mg, 1 mmol) was added to
3
the above-mentioned mixture with strong stirring for 20 min. I2
(127 mg, 0.5 mmol) and [NO2bzql]Cl (1 mmol, 301 mg) in
methanol were added in turn; the resulting dark blue powder
was collected by filtration.
(17) (a) Fettouhi, M.; Ouahab, L.; Hagiwara, M.; Codjovi, E.; Kahn, O.;
Constant-Machado, H.; Varret, F. Inorg. Chem. 1995, 34, 4152–4159.
(b) Laukhina, E.; Vidal-Gancedo, J.; Laukhin, V.; Veciana, J.; Chuev, I.;
Tkacheva, V.; Wurst, K.; Rovira, C. J. Am. Chem. Soc. 2003, 125, 3948–
3953. (c) Alberola, A.; Clements, O. P.; Collis, R. J.; Cubbitt, L.; Grant, C. M.;
Less, R. J.; Oakley, R. T.; Rawson, J. M.; Reed, R. W.; Robertson, C. M. Cryst.
Growth Des. 2008, 8, 155–161.
(18) (a) Kazmaier, P. M.; Hoffmannt, R. J. Am. Chem. Soc. 1994, 116,
9684–9691. (b) Zykova-Timan, T.; Raiteri, P.; Parrinello, M. J. Phys. Chem. B
2008, 112, 13231–13237.
(15) (a) Akutagawa, T.; Shitagami, K.; Nishihara, S.; Takeda, S.; Hase-
gawa, T.; Nakamura, T.; Hosokoshi, Y.; Inoue, K.; Ikeuchi, S.; Miyazaki,
Y.; Saito, K. J. Am. Chem. Soc. 2005, 127, 4397–4402. (b) Akutagawa, T.;
Hasegawa, T.; Nakamura, T.; Inabe, T. J. Am. Chem. Soc. 2002, 124, 8903–8911.
(c) Nishihara, S.; Akutagawa, T.; Hasegawa, T.; Nakamura, T. Chem. Commun.
2002, 408–409. (d) Akutagawa, T.; Hasegawa, T.; Nakamura, T.; Takeda, S.;
Inabe, T.; Sugiura, K.; Sakata, Y.; Underhill, A. E. Chem.;Eur. J. 2001, 7, 4902–
4912.
(19) Wang, C. S.; Batsanov, A. S.; Bryce, M. R.; Howard, J. A. K.
Synthesis 1998, 1615–1618.
(16) Chen, Y. C.; Liu, G. X.; Song, Y.; Xu, H.; Ren, X. M.; Meng, Q. J.
Polyhedron 2005, 24, 2269–2273.
(20) Bulgarevich, S. B.; Bern, D. V.; Movshovic, D. Y.; Finocchiaro, P.;
Failla, S. J. Mol. Struct. 1994, 317, 147–155.