C O M M U N I C A T I O N S
Chart 1. Structures of Sumanene and Its Main-Group Analogues,
Trithiasumanene and Trisilasumanene
a weak absorption band was observed in the longer-wavelength
region (>350 nm) in 10. This longer-wavelength absorption was
mainly attributed to the HOMO-LUMO transition of 10 and
suggested the existence of σ*-π* conjugation on the silicon atoms.
In the emission spectrum (Figure S2 in the Supporting Information),
10 showed a blue fluorescence in dichloromethane solution (λmax
) 427 nm) and in the solid state (λmax ) 447 nm).
In conclusion, we have succeeded in developing an intramo-
lecular sila-Friedel-Crafts reaction as a novel synthetic method
for dibenzosilole derivatives. This reaction proceeds under mild
conditions to afford the target in a relatively high yield, indicating
its availability as a versatile synthetic method. Using the intramo-
lecular sila-Friedel-Crafts reaction, we have achieved the syntheses
of a ladder-type silafluorene and trisilasumanene, a new sumanene
analogue.
from an isomeric mixture of tribromotriphenylene 7, doubly cyclized
monobromide 8 was synthesized in two steps, including a dual sila-
Friedel-Crafts reaction (Scheme 3). Transformation to the precursor
9 was achieved by lithiation of 8 followed by the addition of
diphenylsilane in 51% yield. Finally, the intramolecular sila-
Friedel-Crafts reaction was applied again to 9, and trisilasumanene
10 was obtained in 18% yield as a colorless solid. We succeeded
in X-ray crystallographic analysis of 10. The unit cell consists of
two crystallographically independent molecules that have almost
the same structure; one is shown in Figure 1. It is known that
sumanene and its sulfur analogue, trithiasumanene, have a bowl-
shapedstructurewithbowldepthsof1.11and0.65Å,respectively.15,16
The difference between the bowl depths is attributed to the larger
covalent radius of the sulfur atom. X-ray structural analysis of
trisilasumanene 10 indicated that the main framework was almost
planar. This result is consistent with the theoretical calculations
reported by Priyakumar and Sastry.14
Acknowledgment. This work was supported by the Global COE
Program for Chemistry Innovation. Partial financial support from
MEXT (Kakenhi, 20685005, 21108507) is gratefully acknowledged.
We also thank Shin-etsu Chemical Co., Ltd., Tosoh Finechem Co.,
Ltd., and Central Glass Co., Ltd., for the generous gifts of silicon
reagents, alkyllithiums, and fluorine reagents, respectively.
Supporting Information Available: Experimental procedures,
spectroscopic data for new compounds, optical properties of 10 and
11, and a CIF file for 10. This material is available free of charge via
To elucidate the electronic structure, the UV-vis absorption
spectrum of trisilasumanene 10 was measured in dichloromethane
(Figure S1 in the Supporting Information). An intense absorption
band of 10 (λmax ) 299 nm, log ε ) 4.67) was slightly red-shifted
from that of 2,3,6,7,10,11-hexabutoxytriphenylene 11 (λmax ) 280
nm, log ε ) 5.09) and sumanene (λmax ) 278 nm).17 In addition,
References
(1) (a) Tamao, K.; Uchida, M.; Izumizawa, I.; Furukawa, K.; Yamaguchi, S.
J. Am. Chem. Soc. 1996, 118, 11974. (b) Yamaguchi, S.; Tamao, K. Chem.
Lett. 2005, 34, 2. (c) Wang, F.; Luo, J.; Yang, K.; Chen, J.; Huang, F.;
Cao, Y. Macromolecules 2005, 38, 2253.
(2) (a) Lee, S. H.; Jang, B.-B.; Kafafi, Z. H. J. Am. Chem. Soc. 2005, 127,
9071. (b) Yang, G. C.; Su, Z. M.; Qin, C. S. J. Phys. Chem. A 2006, 110,
4817. (c) Sun, M.; Niu, B.; Zhang, J. P. Theor. Chem. Acc. 2008, 119,
489.
Scheme 3. Synthesis of Trisilasumanene 10a
(3) (a) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Org. Lett. 2007,
9, 133. (b) Li, L.; Xiang, J.; Xu, C. Org. Lett. 2007, 9, 4877.
(4) (a) Ilies, L.; Tsuji, H.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2008,
130, 4240. (b) Yamaguchi, S.; Xu, C.; Tamao, K. J. Am. Chem. Soc. 2003,
125, 13662. (c) Xu, C.; Wakamiya, A.; Yamaguchi, S. Org. Lett. 2004, 6,
3707. (d) Yamaguchi, S.; Xu, C.; Yamada, H.; Wakamiya, A. J. Organomet.
Chem. 2005, 690, 5365. (e) Li, C.; Qiu, H.; Xu, C. Chin. Chem. Lett. 2007,
18, 1436.
(5) Shimizu, M.; Mochida, K.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47,
9760.
(6) Recent reviews on silicenium ions: (a) Lee, V. Ya.; Sekiguchi, A. Acc.
Chem. Res. 2007, 40, 410. (b) Reed, C. A. Acc. Chem. Res. 1998, 31, 325.
(7) Reactions using silicenium ions: (a) Parks, D. J.; Piers, W. E. J. Am. Chem.
Soc. 1996, 118, 9440. (b) Blackwell, J. M.; Foster, K. L.; Beck, V. H.;
Piers, W. E. J. Org. Chem. 1999, 64, 4887. (c) Parks, D. J.; Blackwell,
J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090.
a (a) (i) n-BuLi (2.0 equiv), THF, -78 °C, (ii) Ph2SiCl2, r.t., (iii) LiAlH4,
reflux; (b) Ph3CB(C6F5)4, 2,6-lutidine, CH2Cl2, r.t.; (c) (i) t-BuLi (2.0 equiv),
Et2O, -78 °C, (ii) Ph2SiH2, reflux; (d) Ph3CB(C6F5)4, 2,6-lutidine, CH2Cl2,
r.t.
(8) (a) Sollott, G. P.; Peterson, W. R. J. Am. Chem. Soc. 1967, 89, 5054. (b)
Simchen, G.; Frick, U. Synthesis 1984, 929.
(9) Olah, G. A.; Bach, T.; Prakash, G. K. S. J. Org. Chem. 1989, 54, 3770.
(10) Sakurai, H.; Daiko, T.; Hirao, T. Science 2003, 301, 1878.
(11) For example, see: (a) Corey, J. Y. J. Am. Chem. Soc. 1975, 97, 3237. (b)
Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science 1993, 260,
1917. (c) Lambert, J. B.; Zhao, Y.; Zhang, S. M. J. Phys. Org. Chem.
2001, 14, 370. (d) Duttwyler, S.; Zhang, Y.; Linden, A.; Reed, C. A.;
Baldridge, K. K.; Siegel, J. S. Angew. Chem., Int. Ed. 2009, 48, 3787.
(12) Formation of silanol 3 and disiloxane 4 may result from trace amounts of
water.
(13) Tanikawa, T.; Saito, M. Abstr. Pap.sChem. Soc. Jpn. 2009, 89, 1E1-04.
(14) (a) Priyakumar, U. D.; Sastry, G. N. J. Org. Chem. 2001, 66, 6523. (b)
Priyakumar, U. D.; Punnagai, M.; Mohan, G. P. K.; Sastry, G. N.
Tetrahedron 2004, 60, 3037.
(15) Sakurai, H.; Daiko, T.; Sakane, H.; Amaya, T.; Hirao, T. J. Am. Chem.
Soc. 2005, 127, 11580.
(16) Imamura, K.; Takimiya, K.; Aso, Y.; Otsubo, T. Chem. Commun. 1999,
1859.
(17) Amaya, T.; Mori, K.; Wu, H.-L.; Ishida, S.; Nakamura, J.; Murata, K.;
Hirao, T. Chem. Commun. 2007, 1902.
Figure 1. (a) Top view and (b) side view of the crystal structure of
trisilasumanene 10. In (b), the six butoxy groups have been omitted for the
sake of clarity.
JA906566R
9
J. AM. CHEM. SOC. VOL. 131, NO. 40, 2009 14193