We first tested the cyanation of 2-phenylpyridine with
CuCN. To our delight, cyanation took place in the presence
of Pd(OAc)2 (10 mol %) with Cu(OAc)2 (0.4 equiv) in DMF
under air (Table 1, entry 1). Among the Cu(II) catalysts
Scheme 1. Three Pathways to Access Aromatic Nitrile
Table 1. Selected Results of Screening the Optimal Conditionsa
entry
palladium
oxidant (equiv)
solvent
yield (%)b
1
2
3
4
5
6
7
8
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
PdCl2
Cu(OAc)2 (0.4) DMF
34
25
81(85)c
20
16
42
60
<5
<5
<5
8
11
<5
32
47
<5
13
<5
CuCl2 (0.4)
CuBr2 (0.4)
CuSO4 (0.4)
Cu(OTf)2 (0.4)
DMF
DMF
DMF
DMF
aromatic nitriles via C-H bond cleavage employing TMSCN
as the cyanating reagent.7 The general problem of these
cyanation reactions is the deactivation of the transition-metal
catalyst by formation of highly stable cyano complexes.8
Thus, the concentration of dissolved cyanide ions is crucial
for the direct cyanation of C-H bonds. Herein, we report
the palladium-catalyzed ortho-cyanation of aromatic C-H
bonds employing CuCN as a cyanating reagent.
Cu(acac)2 (0.4) DMF
CuBr2 (0.2)
K2S2O8 (1.0)
DMF
DMF
9
PhI(OAc)2 (1.0) DMF
10
11
12
13
14
15
16
17
18
Oxone (1.0)
CuBr2 (0.4)
CuBr2 (0.4)
CuBr2 (0.4)
CuBr2 (0.4)
CuBr2 (0.4)
CuBr2 (0.4)
DMF
toluene
xylene
1,4-dioxane
DMSO
DMF
(4) For representative reviews on C-H functionalization, see: (a) Dyker,
G. Handbook of C-H Transformations. Applications in Organic Synthesis;
Wiley-VCH: Weinheim, 2005. (b) Murai, S. ActiVation of UnreactiVe Bonds
and Organic Synthesis; Springer: Berlin, 1999; pp 48-78. (c) Crabtree,
R. H. J. Organomet. Chem. 2004, 689, 4083. (d) Dick, A. R.; Sanford,
M. S. Tetrahedron 2006, 62, 2439. (e) Beccalli, E. M.; Broggini, G.;
Martinelli, M.; Sottocornola, S. Chem. ReV. 2007, 107, 5318. (f) Kakiuchi,
F. Top. Organomet. Chem. 2008, 24, 1. (g) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (h) Goj, L. A.; Gunnoe,
T. B. Curr. Org. Chem. 2005, 9, 671. (i) Park, Y. J.; Park, J. W.; Jun,
C. H. Acc. Chem. Res. 2008, 41, 222. (j) Li, B.; Yang, S.; Shi, Z. Synlett
2008, 949. (k) Mori, C. A.; Sugie, A. Bull. Chem. Soc. Jpn. 2008, 81, 548.
(l) Diaz-Requejo, M. M.; Pe´rez, P. J. Chem. ReV. 2008, 108, 3379.
(5) (a) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 5072. (b) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E.
J. Am. Chem. Soc. 2008, 130, 5858. (c) Chiong, H. A.; Daugulis, O. Org.
Lett. 2007, 9, 1449. (d) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q.
Angew. Chem., Int. Ed. 2008, 47, 8897. (e) Wakui, H.; Kawasaki, S.; Satoh,
T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2004, 126, 8658. (f)
Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 12084. (g)
Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411. (h) Deng,
G. J.; Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 6278. (i) Seregin,
I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. (j)
Kuninobu, Y.; Fujii, Y.; Matsuki, T.; Nishina, Y.; Takai, K. Org. Lett. 2009,
11, 2711. (k) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006,
8, 3391. (l) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897. (m) Jin, W.-
W.; Yu, Z.-K.; He, W.; Ye, W.-J.; Xiao, W.-J. Org. Lett. 2009, 11, 1317.
(6) (a) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.
J. Am. Chem. Soc. 2006, 128, 7416. (b) Giri, R.; Chen, X.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2005, 44, 2112. (c) Hull, K. L.; Anani, W. Q.; Sanford,
M. S. J. Am. Chem. Soc. 2006, 128, 7134. (d) Zhao, X.; Dimitrijeviæ, E.;
Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466. (e) Desai, L. V.; Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542. (f) Giri, R.;
Liang, J.; Lei, J.-G.; Li, J.-J.; Wang, D.-H.; Chen, X.; Naggar, I. C.; Guo,
C.; Foxman, B. M.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 7420. (g)
Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141. (h)
Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130,
13285. (i) Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006,
128, 9048. (j) Li, Z.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem.
Soc. 2007, 129, 12058. (k) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto,
T.; Hiroya, K. Org. Lett. 2007, 9, 2931. (l) Ihara, H.; Suginome, M. J. Am.
Chem. Soc. 2009, 131, 7502. (m) Kawamorita, S.; Ohmiya, H.; Hara, K.;
Fukuoka, A.; Sawamura, M. J. Am. Chem. Soc. 2009, 131, 5058.
(7) (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 6790. For the ruthenium-catalyzed cyanation employing
NaCN, see: (b) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am.
Chem. Soc. 2008, 130, 11005.
Pd(dba)2
DMF
Pd(OCOCF3)2 CuBr2 (0.4)
CuBr2 (0.4)
DMF
DMF
a 2-Phenylpyridine (0.2 mmol), CuCN (0.24 mmol), Pd (10 mol %),
indicated oxidant, dry solvent (1 mL), 130 °C, under air, 24 h. b Isolated
yield. c Pd(OAc)2 (5 mol %), 36 h.
tested, CuBr2 was the best, and the yield was sharply
increased to 81% by employing 0.4 equiv of CuBr2 at 130
°C in DMF for 24 h (entry 3). In the case of employing 5
mol % of Pd(OAc)2, the cyanation product was isolated in
85% yield with elongated reaction time (36 h). Other
oxidants, such as K2S2O8 and PhI(OAc)2, were totally
ineffective for this transformation. The use of toluene, xylene,
and 1,4-dioxane as solvents resulted in lower yields or no
reaction (entries 11-13, Table 1). Gratifyingly, the mono-
cyanated product was obtained as a major product, probably
because the electron-withdrawing cyanogen group attached
to the aryl ring inhibited further reaction. Under an O2
atmosphere, a comparable result was obtained, providing the
cyanation products in 75% yield. Under N2, only 27% of
the desired product was isolated, indicating that air may serve
as a terminal oxidant in the procedure. Further studies
revealed that Pd(OAc)2 was superior to other Pd(II) catalysts
and Pd(0) was totally ineffective. No product was formed
in the absence of Pd(II). Importantly, this transformation is
very practical as it does not require the use of strong bases
or expensive ligands, and the rigorous exclusion of air/
moisture is not required.
(8) Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2003,
42, 1661, and references cited therein.
Org. Lett., Vol. 11, No. 20, 2009
4717