9936 Inorg. Chem. 2009, 48, 9936–9946
DOI: 10.1021/ic901327m
Synthesis, Structure, and Reaction Chemistry of Samarium(II), Europium(II), and
Ytterbium(II) Complexes of the Unsymmetrical Benzamidinate Ligand
[PhC(NSiMe3)(NC6H3Pri2-2,6)]-
Shuang Yao,† Hoi-Shan Chan,† Chi-Keung Lam,‡ and Hung Kay Lee*,†
†Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong SAR, P.R. China, and ‡School of Chemistry and Chemical Engineering,
Sun Yat-Sen University, Guangzhou 510275, P.R. China
Received July 9, 2009
Neutral mononuclear lanthanide(II) bis(amidinate) complexes [LnL2(THF)x] [L = PhC(NSiMe3)(NC6H3Pri2-2,6)-;
Ln = Sm, x = 2 (3); Ln = Eu, x = 2, (4); Ln = Yb, x = 1 (5)] were synthesized by the reaction of the appropriate
LnI2(THF)2 with potassium amidinate [KL]n (2). The reduction chemistry of 3-5 was also examined. The reaction
of the Sm(II) and Eu(II) amidinates 3 and 4 with diphenyl dichalcogenides PhEEPh (E = Se, Te) led to the binu-
clear lanthanide(III) amidinate-chalcogenolate complexes [LnL2(μ-EPh)]2 [Ln = Sm, E = Se (6); Ln = Eu, E = Se (7);
Ln = Sm, E = Te (9)], whereas reacting the Yb(II) bis(amidinate) 5 with PhSeSePh yielded the mononuclear
[YbL2(SePh)(THF)] (8). The reaction of 5 with iodine led to the Yb(III) bis(amidinate) iodide complex [YbL2(I)(THF)]
(10). Treatment of 3 with N,N0-dicyclohexylcarbodiimide afforded the mixed-ligand Sm(III) tris(amidinate)
[SmL2{CyNC(H)NCy}] (11) (Cy = cyclohexyl). The molecular structures of complexes 2-5 and 7-11 were
elucidated by X-ray diffraction analyses.
Introduction
and electronic properties can be readily modified by intro-
duction of various R1 and R2 substituents. Amidinates are
useful ligands in organolanthanide chemistry,5 and a number
of trivalent lanthanide amidinates have been reported.1,5-12
In contrast, the chemistry of their divalent counterparts
remains an underdeveloped area. Edelmann and co-work-
ers13 have reported a series of mononuclear Yb(II) benzami-
dinate complexes [Yb{(RC6H4)C(NSiMe3)2}2(THF)2] (R =
H, OMe, Ph). The reactivity of some of these complexes
toward reduction of diaryl dichalcogenides REER (R = Ph,
Mes; E = Se, Te) was also studied.13b Recently, Junk and co-
workers14 have reported the sterically hindered complex
Over the past decades, tremendous research efforts have
been devoted to the development of various types of ancil-
lary ligands as alternatives for cyclopentadienyl ligands.1,2
Among those cyclopentadienyl alternatives, amidinate li-
gands [R1NC(R2)NR1]- have proved to be versatile, forming
stable complexes with a wide range of metals.3,4 Their steric
*To whom correspondence should be addressed. E-mail: hklee@cuhk.
edu.hk.
(1) (a) Edelmann, F. T. In Comprehensive Organometallic Chemistry II ;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier Science Ltd.: Oxford,
1995.(b) Edelmann, F. T.; Freckmann, D. M. M.; Schumann, H. Chem. Rev. 2002,
102, 1851–1896.
(2) Evans, W. J.; Montalvo, E.; Dixon, D. J.; Ziller, J. W.; Dipasquale,
A. G.; Rheingold, A. L. Inorg. Chem. 2008, 47, 11376–11381.
(3) Edelmann, F. T. Coord. Chem. Rev. 1994, 137, 403–481.
(4) Junk, P. C.; Cole, M. L. Chem. Commun. 2007, 1579–1590.
(5) Edelmann, F. T. Chem. Soc. Rev. 2009, 38, 2253–2268.
(6) (a) Duchateau, R.; van Wee, C. T.; Meetsma, A.; Teuben,
J. H. J. Am. Chem. Soc. 1993, 115, 4931–4932. (b) Duchateau, R.; Meetsma,
A.; Teuben, J. H. Organometallics 1996, 15, 1656–1661. (c) Duchateau, R.; van
Wee, C. T.; Teuben, J. H. Organometallics 1996, 15, 2291–2302. (d) Duchateau,
R.; van Wee, C. T.; Meetsma, A.; van Duijnen, P. T.; Teuben, J. H. Organome-
tallics 1996, 15, 2279–2290.
(8) Doyle, D.; Gunko, Y. K.; Hitchcock, P. B.; Lappert, M. F. J. Chem.
Soc., Dalton Trans. 2000, 4093–4097.
(9) (a) Bambirra, S.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organome-
tallics 2001, 20, 782–785. (b) Bambirra, S.; Bouwkamp, M. W.; Meetsma, A.;
Hessen, B. J. Am. Chem. Soc. 2004, 126, 9182–9183.
(10) (a) Luo, Y. J.; Yao, Y. M.; Shen, Q.; Sun, J.; Weng, L .H.
J. Organomet. Chem. 2002, 662, 144–149. (b) Wang, J.; Yao, Y.; Cheng, J.;
Pang, X.; Zhang, Y.; Shen, Q. J. Mol. Struct. 2005, 743, 229–235. (c) Li, C.;
Wang, Y.; Zhou, L.; Sun, H.; Shen, Q. J. Appl. Polym. Sci. 2006, 102, 22–28.
(11) Villiers, C.; Thuery, P.; Ephritikhine, M. Eur. J. Inorg. Chem. 2004,
4624–4632.
(7) (a) Recknagel, A.; Knosel, F.; Gornitzka, H.; Noltemeyer, M.;
Edelmann, F. T.; Behrens, U. J. Organomet. Chem. 1991, 417, 363–375.
(b) Wedler, M.; Knosel, F.; Pieper, U.; Stalke, D.; Edelmann, F. T.; Amberger,
H. D. Chem. Ber. 1992, 125, 2171–2181. (c) Hagen, C.; Reddmann, H.;
Amberger, H. D.; Edelmann, F. T.; Pegelow, U.; Shalimoff, G. V. J. Organomet.
Chem. 1993, 462, 69–78. (d) Richter, J.; Feiling, J.; Schmidt, H. G.; Noltemeyer,
M.; Beuser, W.; Edelmann, F. T. Z. Anorg. Allg. Chem. 2004, 630, 1269–1275.
(12) Cole, M. L.; Deacon, G. B.; Junk, P. C.; Konstas, K. Chem. Commun.
2005, 1581–1583.
(13) (a) Wedler, M.; Noltemeyer, M.; Pieper, U.; Schmidt, H. G.; Stalke,
D.; Edelmann, F. T. Angew. Chem., Int. Ed. Engl. 1990, 29, 894–896.
(b) Wedler, M.; Recknagel, A.; Gilje, J. W.; Noltemeyer, M.; Edelmann, F. T.
J. Organomet. Chem. 1992, 426, 295–306.
(14) Cole, M. L.; Junk, P. C. Chem. Commun. 2005, 2695–2697.
r
pubs.acs.org/IC
Published on Web 09/16/2009
2009 American Chemical Society