Organometallics 2009, 28, 4133–4140 4133
DOI: 10.1021/om900099u
Insights into Hydrogen Generation from Formic Acid Using Ruthenium
Complexes
David J. Morris, Guy J. Clarkson, and Martin Wills*
Department of Chemistry, The University of Warwick, Coventry, CV4 7AL U.K.
Received February 9, 2009
The decomposition of a HCO2H/Et3N azeotrope to a mixture of hydrogen and carbon dioxide may
be catalyzed by a number of Ru(III) and Ru(II) complexes with high efficiency at ca. 120 °C. Evidence
that suggests that the precatalyst may in each case be a common ruthenium dimer has been obtained
through 1H NMR and X-ray crystallographic studies of the complexes formed in situ and of analysis
of the gases generated in the reaction using FTIR and gas chromatography methods.
There is currently a high level of interest in the use of
hydrogen as an energy vector; since the only byproduct of its
combustion is water, it represents a clean power source.1,2
Currently, hydrogen is generated from fossil fuel sources
using steam reforming and related processes.3 Heteroge-
neous catalytic systems have been investigated for hydrogen
generation from biomass, and this continues to be an im-
portant area for future research work.4
Formic acid (FA) may be regarded as a source of, and
storage material for, hydrogen.5-12 FA will decompose to H2/
CO2 in a thermodynamically favored process (Scheme 1),5k
although highly elevated temperatures are required.5a-c The
process may be catalyzed by a number of metal complexes.
Publications from the 1950s through to the present day5d-q
describe the use of various metals including Au/Pd,5d,5e Ag,5f
Ni,5f,5g,5i Cu,5g,5i Pt,5h,5p,5q Ru,5h,5o Ir,5h Ti, V, Cr, Mn, Fe,
Co,5h W,5j Rh,5k,5n Pt,5l and Cd.5m Formate salts may also be
used as effective sources of hydrogen, including ammonium
and metal formates.6 The reverse reaction, i.e., the hydro-
genation of carbon dioxide, has been demonstrated to be a
practical and viable method of making FA.7 Fuel cells based
on FA have been developed and are being commercialized.8
Theintermediacy of FAinthe water gas shiftreactionpresents
the possibility of making hydrogen from water and carbon
monoxide, via FA.9 Hence, there is significant potential for
the development of a viable “joined up” system of hydrogen
*Corresponding author. Fax: (þ44) 24 7652 3260. Tel: (þ44) 24 7652
4112. E-mail: m.wills@warwick.ac.uk.
(1) (a) Hydrogen Energy, Challenges and Prospects; Rand, D. A. J.,
Dell, R. M., Eds.; RSC Publishing: Cambridge, 2007. (b) Hydrogen as a
Future Energy Carrier; Z€uttel, A., Borgschulte, A., Schlapbach, L., Eds.;
Wiley VCH: Weinheim, 2008. (c) Bockris, J. O. M. Science 1972, 176, 1323.
(d) Crabtree, G. W.; Dresselhaus, M. S.; Buchman, M. V. Phys. Today 2004,
57, 39–44. (e) Baykara, S. Z.; Int. J. Hydrogen Energy 2005, 30, 545–553.
(f) Z€uttel, A.; Schlapbach, L. Nature 2001, 414, 353–358.
ꢀ
(2) van den Berg, A. W. C.; Arean, C. O. Chem. Commun. 2008, 668–
681.
~
(3) Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2007,
107, 3952–3991.
(4) (a) Dupont, V.; Ross, A. B.; Hanley, I.; Twigg, M. V. Int. J.
Hydrogen Energy 2007, 32, 67–79. (b) Ramírez de la Piscina, P.; Homs, N.
Chem. Soc. Rev. 2008, 37, 2459–2467. (c) Zhou, C.-H.; Beltramini, J. N.;
Fan, Y.-X.; Lu, G. Q. (M.) Chem. Soc. Rev. 2008, 37, 527–549.
(d) Einashaie, S.; Chen, Z.; Prasad, P. Int. J. Green Energy 2007, 4,
249–282.
(7) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259–
272. (b) Leitner, W. Angew. Chem., Int. Ed. 1995, 34, 2207–2221.
(c) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. Chem. Commun. 1995,
707–708. (d) Leitner, W.; Dinjus, E.; Gabsser, F. J. Organomet. Chem. 1994,
475, 257–266. (e) Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368,
(5) (a) Hinshelwood, C. N.; Hartley, H. J. Chem. Soc. Trans. 1923,
123, 1333–1338. (b) Wakai, C.; Yoshida, K.; Tsujino, Y.; Matubayashi, N.;
Nakamura, M. Chem. Lett. 2004, 33, 572–573. (c) Blake, P. G.; Davies,
H. H.; Jackson, G. E. J. Chem. Soc. (B) 1971, 1923–1925. (d) Eley, D. D.
Leutic, P. Trans. Faraday Soc. 1957, 53, 1483–1487. (e) Zhou, X.; Huang, Y.;
Xing, W.; Liu, C.; Liao, J.; T. Lu, T. Chem. Commun. 2008, 3540–3542.
(f ) Tamaru, K. Trans. Faraday Soc. 1959, 55, 824–832. (g) Duell, M. J.
Robertson, A. J. B. Trans. Faraday Soc. 1961, 57, 1416–1423. (h) Coffey, R. S.
Chem. Commun. 1967, 923–924. (i) Inglis, H. S.; Taylor, D. J. Chem. Soc.
(A) 1969, 2985–2987. ( j) Bhattacharya, A. K. J. Chem. Soc., Faraday
Trans. 1 1979, 75, 863–871. (k) Strauss, S. H.; Whitmire, K. H.; Shriver, D. F.
J. Organomet. Chem. 1979, 174, C59–C62. (l) Paonessa, R. S.; Trogler, W. C. J.
Am. Chem. Soc. 1982, 104, 3529–3530. (m) Willner, I.; Goren, Z. Chem.
Commun. 1986, 172–173. (n) King, R. B.; Bhattacharyya, N. K. Inorg.
Chim. Acta 1995, 237, 65–69. (o) Gao, Y.; Kuncheria, J.; Yap, G. P. A.;
Puddephatt, R. J. Chem. Commun. 1998, 2365–2366. (p) Hyde, J. R.;
Poliakoff, M. Chem. Commun. 2004, 1482–1483. (q) Garcia-Verdugo, E.;
Liu, Z.; Ramirez, E.; Garcia-Serna, J.; Frago-Dubreuil, J.; Hyde, J. R.;
Hamley, P. A.; Poliakoff, M. Green Chem. 2006, 8, 359–364.
ꢀ
ꢀ
231–233. (f ) Elek, J.; Nadasdi, L.; Papp, G.; Laurenczy, G.; Joo, F. App.
Catal. A: Gen. 2003, 255, 59–67. (g) Fukuzumi, S. Eur. J. Inorg. Chem.
2008, 1351–1362.
(8) (a) Ha, S.; Dunbar, Z.; Masel, R. I. J. Power Sources 2006, 158,
129–136. (b) Ha, S.; Larsen, R.; R. I. Masel, R. I. J. Power Sources 2005,
144, 28–34. (c) Zhu, Y.; Ha, S.; Masel, R. I. J. Power Sources 2004, 130, 8–
14. (d) Ha, S.; Adams, B.; Masel, R. I. J. Power Sources 2004, 128, 119–24.
(9) (a) Yoshida, T.; Ueda, Y.; Otsuka, S. J. Am. Chem. Soc. 1978, 100,
3941–3942. (b) Yoshida, K.; Wakai, C.; Matubayashi, N.; Nakahara, M. J.
ꢀ
Phys. Chem. 2004, 108, 7479–7482. (c) Joo, F. ChemSusChem 2008, 1,
805–808. (d) Enthaler, S. ChemSusChem 2008, 1, 801–804.
(10) (a) Boddien, A.; Loges, B.; Junge, H.; Beller, M. Angew. Chem.,
Int. Ed. 2008, 47, 3962–3965. (b) Boddien, A.; Loges, B.; Junge, H.; Beller,
M. ChemSusChem 2008, 1, 751–758. (c) Junge, H.; Boddien, A.; Capitta, F.;
Loges, B.; Noyes, J. R.; Gladiali, S.; Beller, M. Tetrahedron Lett. 2009, 50,
1603–1606.
(11) (a) Fellay, C.; Dyson, P. J.; Laurenczy, G. Angew. Chem., Int. Ed.
2008, 47, 3966–3968. (b) Fellay, C.; Yan, N.; Dyson, P. J.; Laurenczy, G.
Chem.;Eur. J. 2009, 15, 3752–3760.
(6) (a) Delpuech, J. J.; Ducom, J.; Michon, V. Chem. Commun. 1970,
1187–1188. (b) Wiener, H.; Sasson, Y.; Blum, J. J. Mol. Catal. 1986, 35,
277–284. (c) Onsager, O.-T.; Brownrigg, M. S. A.; Lodeng, R. Int. J.
Hydrogen Energy 1996, 21, 883–885. (d) Fukuzumi, S.; Kobayashi, T.;
Suenobo, T. ChemSusChem 2008, 1, 827–834.
(12) Wagner, K. Angew. Chem., Int. Ed. 1970, 9, 50–56.
r
2009 American Chemical Society
Published on Web 07/02/2009
pubs.acs.org/Organometallics