A R T I C L E S
Ohshima et al.
development of a highly efficient method of synthesizing
allylamines in an environmentally benign manner have been
studied by many research groups.2 Most of the previous catalytic
systems, however, require rather severe reaction conditions or
the addition of considerable amounts of an activator, such as
As2O3,7 B2O3,8 SnCl2,9 PPh3-DEAD,10 Ti(O-i-Pr)4,11 BPh3,12
BF3•Et2O,13 CO2,14 BEt3,15 and 1-AdCO2H,16 including an
efficient enantioselective variant,17 to increase the leaving ability
of the hydroxy group. Recently, palladium-catalyzed direct
aminations of allylic alcohols without the use of an activator
were developed by the research groups of Ozawa and Yoshi-
fuji,18 Ikariya,19 Shinokubo and Oshima,20 le Floch,21 and
Breit,22 leading to the development of a highly atom economical
synthetic process for allylamines.23 The substrate generality of
those reactions, however, remains limited. In particular, the
reaction with aliphatic primary amines results only in the
formation of the diallylation products19,20 because of the higher
nucleophilicity of the monoallylation product compared to that
of the starting substrate. In 2007, we reported a new direct
catalytic amination of allylic alcohols24 promoted by the
combination of Pt(cod)Cl2 and a large bite-angle ligand,
DPEphos25 or Xantphos.26 This platinum catalysis proceeded
with high monoallylation selectivity of both aromatic (up to
>88:1) and aliphatic (up to 30:1) primary amines. Later, le Floch
et al. reported that the reactivity of the platinum-catalyzed
amination was improved by using a catalytic system of [Pt(η3-
allyl)(dpp-xantphos)]PF6 (DPP-Xantphos: 4,5-bis(2,5-diphenyl-
1H-phosphol-1-yl)-9,9-dimethyl-9H-xanthene) and NH4PF6 (20
mol %) as an activator.27 These platinum-catalyzed reactions,
however, have much room for improvement in terms of substrate
generality of the allylic alcohol because only allyl alcohol and
R- or γ-aryl-substituted allylic alcohols afford a high yield and
the reaction of alkyl-substituted allylic alcohol results in
moderate yield because of side reactions, such as ꢀ-H elimina-
tion. Herein, we report a highly versatile direct substitution
reaction of both aryl- and alkyl-substituted allylic alcohols with
various amines catalyzed by Pt-Xantphos and Pt-DPEphos
complexes without the need for an additional activator. We
observed drastic ligand effects, and the large bite-angle as well
as the linker oxygen atom of the Xantphos and DPEphos ligands
were essential to achieve high catalytic activity. Microwave
irradiation efficiently accelerated the reaction without a loss of
selectivity, making it possible to lower the reaction temperature
to 50 °C and shorten the reaction time to 1 h for arylamines
and 2 h for alkylamines. In addition, the usefulness of the present
direct catalysis was demonstrated by a one-step synthesis of
the biologically active compounds Naftifine and Flunarizine in
95% and 94% yields, respectively. Finally, on the basis of
(7) Lu, X.; Lu, L.; Sun, J. J. Mol. Catal. 1987, 41, 245.
(8) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109.
(9) (a) Masuyama, Y.; Takahara, J. P.; Kurusu, Y. J. Am. Chem. Soc.
1988, 110, 4473. (b) Masuyama, Y.; Kagawa, M.; Kurusu, Y. Chem.
Lett. 1995, 1121.
(10) Lumin, S.; Falck, J. R.; Capdevila, J.; Karara, A. Tetrahedron Lett.
1992, 33, 2091.
(11) (a) Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem. Soc.,
Perkin Trans. 1 1992, 2833. (b) Satoh, T.; Ikeda, M.; Miura, M.;
Nomura, M. J. Org. Chem. 1997, 62, 4877. (c) Yang, S.-C.; Hung,
C.-W. J. Org. Chem. 1999, 64, 5000. (d) Yang, S.-C.; Tsai, Y.-C.;
Shue, Y.-J. Organometallics 2001, 20, 5326. (e) Shue, Y.-J.; Yang,
S.-C.; Lai, H.-C. Tetrahedron Lett. 2003, 44, 1481.
1
several mechanistic investigations, including H and 31P{1H}
NMR studies, isolation of several catalytic intermediates,
confirmation of the structure of [Pt(η3-allyl)(xantphos)]OTf by
X-ray crystallographic analysis, and crossover experiments, we
present a plausible catalytic cycle in which (1) all catalytic
intermediates in the cycle are in rapid equilibrium even at room
temperature; (2) among them, [Pt(η3-allyl)(xantphos)]X is the
most stable species; and (3) the formation of the π-allylplatinum
complex through the elimination of water, which is activated
by in situ generated ammonium salt, is an irreversible rate-
determining step.
(12) Stary, I.; Stara´, I. G.; Kocovsky, P. Tetrahedron Lett. 1993, 34, 179.
(13) Tsay, S.; Lin, L. C.; Furth, P. A.; Shum, C. C.; King, D. B.; Yu,
S. F.; Chen, B.; Hwu, J. R. Synthesis 1993, 329.
(14) Sakamoto, M.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1996,
69, 1065.
(15) (a) Kimura, M.; Tomizawa, T.; Horino, Y.; Tanaka, S.; Tamaru, Y.
Tetrahedron Lett. 2000, 41, 3627. (b) Kimura, M.; Horino, Y.; Mukai,
R.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2001, 123, 10401. (c)
Kimura, M.; Futamata, M.; Shibata, K.; Tamaru, Y. Chem. Commun.
2003, 234.
(16) Yang, S.-C.; Hsu, Y.-C.; Gan, K.-H. Tetrahedron 2006, 62, 3949.
(17) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc.
2007, 129, 7508.
(18) (a) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami,
T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968. (b) Ozawa,
F.; Ishiyama, T.; Yamamoto, S.; Kawagishi, S.; Murakami, H.;
Yoshifuji, M. Organometallics 2004, 23, 1698.
Results and Discussion
Reaction Using Arylamines. The study was initiated by
evaluating solvent effects using cinnamyl alcohol (1a) and
aniline (3a) as representative substrates at 110 °C or the solvent
reflux temperature (Table 1, entries 1-7). To clarify the solvent
(19) Kayaki, Y.; Koda, T.; Ikariya, T. J. Org. Chem. 2004, 69, 2595.
(20) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 4085.
(21) (a) Piechaczyk, O.; Doux, M.; Ricard, L.; Le Floch, P. Organometallics
2005, 24, 124. (b) Thoumazet, C.; Gru¨tzmacher, H.; Deschamps, B.;
Ricard, L.; le Floch, P. Eur. J. Inorg. Chem. 2006, 3911. (c)
Piechaczyk, O.; Thoumazet, C.; Jean, Y.; le Floch, P. J. Am. Chem.
Soc. 2006, 128, 14306. (d) Mora, G.; Deschamps, B.; van Zutphen,
S.; Le Goff, X. F.; Ricard, L.; le Floch, P. Organometallics 2007, 26,
1846.
28
effects, reactions assisted by Pt(cod)Cl2 (1.0 mol %) and
DPEphos (2.0 mol %) in various solvents were stopped after
3 h and the yield of allylamine 4aa was determined by gas
chromatographic analysis. Among the solvents examined, di-
oxane (entry 3, 72%), which was used in an earlier study,24
(22) Usui, I.; Schmidt, S.; Keller, M.; Breit, B. Org. Lett. 2008, 10, 1207.
(23) Lewis acid-catalyzed direct substitution of allylic, propargylic, and
benzylic alcohols with electron-deficient nitrogen nucleophiles were
reported. For representative examples, see: (a) Nishibayashi, Y.;
Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.;
Uemura, S. Chem.sEur. J. 2005, 11, 1433. (b) Terrasson, V.; Marque,
S.; Georgy, M.; Campagne, J.-M.; Prim, D. AdV. Synth. Catal. 2006,
348, 2063. (c) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M.
Angew. Chem., Int. Ed. 2007, 46, 409. (d) Guo, S.; Song, F.; Liu, Y.
Synlett 2007, 964. (e) Reddy, C. R.; Madhavi, P. P.; Reddy, A. S.
Tetrahedron Lett. 2007, 48, 7169. (f) Sreedhar, B.; Reddy, P. S.;
Reddy, M. A.; Neelima, B.; Arundhathi, R. Tetrahedron Lett. 2007,
48, 8174. (g) Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2008,
49, 858. (h) Wang, G.-W.; Shen, Y.-B.; Wu, X.-L. Eur. J. Org. Chem.
2008, 4367. (i) Huang, W.; Shen, Q.-S.; Wang, J.-L.; Zhou, X.-G.
Chin. J. Chem. 2008, 26, 729.
(24) Utsunomiya, M.; Miyamoto, Y.; Ipposhi, J.; Ohshima, T.; Mashima,
K. Org. Lett. 2007, 9, 3371.
(25) (a) Dube, G.; Selent, D.; Taube, R. Z. Chem. 1985, 25, 154. (b)
Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M. Organometallics 1995, 14, 3081. (c) Caporali,
M.; Mu¨ller, C.; Staal, Bastiaan, B. P.; Tooke, D. M.; Spek, A. L.; van
Leeuwen, P. W. N. M. Chem. Commun. 2005, 3478.
(26) For a review, see: (a) Kamer, P. C. J.; van Leeuwen, P. W. N. M.;
Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895. (b) Hillebrand, S.;
Bruckmann, J; Kru¨ger, C.; Haenel, M. W. Tetrahedron Lett. 1995,
36, 75.
(27) Mora, G.; Piechaczyk, O.; Houdard, R.; Me´zailles, N.; Le Goff, X.-
F.; le Floch, P. Chem.sEur. J. 2008, 14, 10047.
(28) See the Supporting Information for details.
9
14318 J. AM. CHEM. SOC. VOL. 131, NO. 40, 2009