S. Bertrand et al. / Tetrahedron Letters 51 (2010) 2119–2122
2121
C(CH3)3
CH3
OCH3
aromatic
protons
CH2 (allylic)
CH
CH2O
(allylic)
(vinylic)
O
O
Si
O
C(CH3)3
CH3 (allylic)
CH2 (allylic)
13
OCH3
CH2O
CH (vinylic)
aromatic protons
8
6
4
2 F2 [ppm]
Figure 3. NOESY NMR spectrum of the unsaturated ester 13.
t-Bu
Boc NH OH
O
mechanism known to be mediated by secreted iron chelators. Di-
mers built from a siderophore and a fluorescent marker should also
be accessible using the synthetic approach described herein.24
Such probe-adducts would also be of a great interest to further
understand the specific mechanisms developed by fungi such as
Boc NH O
O
a
c
HN
HN
Z
Z
15
16
b
t-Bu
Aspergillus fumigatus,25 Histoplasma capsulatum26 and
apiospermum.9
S.
Boc NH O
O
t-Bu
Boc NH O
O
HN
O
O
H2N
Acknowledgements
18
17
During his Ph.D., Samuel Bertrand was recipient of a grant from
‘Conseil Général du Maine et Loire, France’. We thank S. Fournier
and M. Lagree from the ‘Plateforme d’Ingénierie et Analyses Molécul-
aires’ (PIAM) of the University of Angers for the MS measurements.
Scheme 2. Synthesis of N-hydroxyornithine subunit 18. Reagents and conditions:
(a) DMF–DBA, toluene, MW, 160 °C, 10 min, 45%; (b) H2, Pd/C 10%, 99%; (c) benzoyl
peroxide, DMF, rt, 1.5 h, 47%.
References and notes
1. Philpott, C. C. Biochim. Biophys. Acta – Mol. Cell Res. 2006, 1763, 636–645.
2. Haas, H.; Eisendle, M.; Turgeon, B. G. Annu. Rev. Phytopathol. 2008, 46, 149–187.
3. Liu, Z. D.; Hider, R. C. Coord. Chem. Rev. 2002, 232, 151–171.
4. Vergne, A. F.; Walz, A. J.; Miller, M. J. Nat. Prod. Rep. 2000, 17, 99–116.
5. Widmer, J.; Keller-Schierlein, W. Helv. Chim. Acta 1974, 57, 1904–1912.
6. Emery, T. Arch. Microbiol. 1974, 95, 227–236.
Boc
O
NH
NH O
HO
O
t-Bu O
+
tBDPS
O
O
18
14
7. Jalal, M. A. F.; van der Helm, D. Isolation and Spectroscopic Identification of
Fungal Siderophores. In CRC Handbook of Microbial Iron Chelates; CRC Press,
1991; pp 235–269.
8. Renshaw, J. C.; Robson, G. D.; Trinci, A. P. J.; Wiebe, M. G.; Livens, F. R.; Collison,
D.; Taylor, R. J. Mycol. Res. 2002, 106, 1123–1142.
9. Bertrand, S.; Larcher, G.; Landreau, A.; Richomme, P.; Duval, O.; Bouchara, J.-P.
Biometals 2009, 22, 1019–1029.
Boc
O
NH
O
N
O
t-Bu O
tBDPS
O
O
10. Nicolaou, K. C.; Lizos, D. E.; Kim, D. W.; Schlawe, D.; De Noronha, R. G.;
Longbottom, D. A.; Rodriquez, M.; Bucci, M.; Cirino, G. J. Am. Chem. Soc. 2006,
128, 4460–4470.
11. Hollowood, C. J.; Yamanoi, S.; Ley, S. V. Org. Biomol. Chem. 2003, 1, 1664–1675.
12. Data for unsaturated carboxylic acid 14: 1H NMR (270 MHz, CDCl3) 7.65 (d, 4H),
7.4 (m, 6H), 5.73 (s, 1H), 3.80 (t, J = 6.3 Hz, 2H), 2.42 (t, J = 6.3 Hz, 2H), 2.13 (s,
3H), 1.06 (s, 9H); 13C NMR (270 MHz, CDCl3) 171.2, 159.9, 135.6, 133.6, 129.7,
127.7, 116.8, 61.8, 44.0, 26.8, 19.3, 19.2; MS (ESIꢀ) 366.93[MꢀH]ꢀ.
13. Evans, D. A.; Cameron Black, W. J. Am. Chem. Soc. 1993, 115, 4497–4513.
14. Milewska, M. J.; Chimiak, A. Synthesis 1990, 233–234.
19
Scheme 3. Synthesis of protected trans-fusarinine 19. Reagents and conditions:
SOCl2, iPr2EtN, CH2Cl2, 4%.
We reported here an original strategy for the total synthesis of
trans-fusarinine. So far, we described an advanced protected pre-
cursor of this scaffold. As the final coupling stage has to be im-
proved in terms of yield, we are currently investigating other
coupling reaction alternatives.22 Moreover, this strategy should
also be adapted for the synthesis of the cis-fusarinine scaffold. Thus
addition of dimethyl lithium cuprate to the unsaturated ester 11
should afford the (Z) isomer of 13 as a key subunit of cis-
fusarinine.23
The yield of the final coupling reaction has to be improved to
turn this route into a general synthetic pathway to many major
fungal siderophores so far not prepared using the usual peptide-
chemistry strategies. These derivatives and their synthetic ana-
logues will be the essential tools to study the iron acquisition
15. Surman, M. D.; Miller, M. J. Org. Lett. 2001, 3, 519–521.
16. Pattenden, G.; Thompson, T. Chem. Commun. 2001, 717–718.
17. Ludwig, J.; Bovens, S.; Brauch, C.; Elfringhoff, A. S.; Lehr, M. J. Med. Chem. 2006,
49, 2611–2620.
18. Data for amino acid 18: 1H NMR (270, CDCl3) 7.81 (d, 2H, 6.93 Hz), 7.44 (m, 3H),
6.72 (m, 1H), 5.20 (d, 1H, 7.92 Hz), 4.21 (m, 1H), 3.55 (m, 2H), 1.9–1.6 (m, 4H),
1.47 (s, 9H), 1.45 (s, 9H); 13C NMR (270, CDCl3) 171.6, 167.5, 157.9, 134.6,
131.3, 128.5, 127.0, 82.2, 79.9, 53.3, 39.3, 30.8, 28.3, 28.0, 25.2; [a]D
(MeOH) = ꢀ18.4.
19. Berman, A. M.; Johnson, J. S. J. Org. Chem. 2006, 71, 219–224.
20. Wang, Q. X.; Hing, J.; Phanstiel, O., IV J. Org. Chem. 1997, 62, 8104–8108.
21. Data for protected fusarinine 19: 1H NMR (270 MHz, CDCl3): 7.71 (m, 3H), 7.64
(m, 4H), 7.40 (m, 8H), 5.74 (s, 1H), 5.36 (s, 1H), 4.16 (m, 1H), 3.80 (t, J = 6.4 Hz,
2H), 2.89 (m, 2H), 2.39 (t, J = 6.3 Hz, 2H), 2.12 (s, 3H), 1.9–1.6 (m, 4H), 1.26 (s,
18H), 1.05 (s, 9H); MS (ESIꢀ) 793.41 [M+Cl]ꢀ.
22. Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606–631.