4524
A.V. Pawlikowski et al. / Inorganica Chimica Acta 362 (2009) 4517–4525
7.10 (d, 2 H, 3JHH = 6.4 Hz, ortho-C6H5), 7.15–7.22 (m, 3 H, para- and
meta-C6H5). 13C{1H} NMR (tetrahydrofuran-d8, 125 MHz): d 24.12
surface. The corrections for the mCO [23] are similar to those found
for other similar B3LYP calculations [28].
(
), 27.91
(
), 28.18
(
),
NCMe2CH2OC
NCMe2CH2OC
NCMe2CH2OC
Acknowledgement
31.14 (NCH3), 71.17 (
), 82.46 (
NCMe2CH2OC
), 82.70
NCMe2CH2OC
We thank the U.S. DOE office of Basic Energy Sciences, through
the Catalysis Science Grant No. AL-03-380-011, the Roy J. Carver
Charitable Trust, and the National Science Foundation (Award
number OCI-0749156) for support. We gratefully acknowledge
Ames Laboratory and Iowa State University for computational re-
sources. Dr. Bruce Fulton is thanked for assistance collecting 15N
NMR spectral data.
1
(
), 122.17 (q, JFC = 319 Hz, OSO2CF3), 127.68 (para-
NCMe2CH2OC
C6H5), 128.74 (meta-C6H5), 133.85 (ortho-C6H5), 173.65 (CO).
15N{1H} NMR (tetrahydrofuran-d8, 71 MHz): ꢁ211.0 (N–Me),
ꢁ181.0 (N–Ir). 11B NMR (tetrahydrofuran-d8, 128 MHz): d ꢁ16.5.
19F NMR (tetrahydrofuran-d8, 376 MHz): d ꢁ81.8. IR (KBr, cmꢁ1):
m
3072 (w), 3006 (w), 2976 (m), 2937 (w), 2069 (s), 1997 (s),
1602 (m), 1575 (s), 1541 (w), 1479 (w), 1461 (m), 1435 (w),
1392 (w), 1297 (s), 1279 (s), 1257 (s), 1224 (w), 1208 (w), 1154
(s), 1031 (s), 956 (m). Anal. Calc. for C28H35BF3IrN3O8S: C,
39.58; H, 4.15; N, 4.95. Found: C, 39.74; H, 4.17; N, 4.89%. mp
145–147 °C.
Appendix A. Supplementary material
Details of DFT optimized atomic coordinates and normal modes,
and X-ray diffraction collection, atomic coordinates, and refined
bond lengths and angles.
Supplementary data associated with this article can be found, in
4.7. [Ir(j
2-ToM-N3-H)(CO)2][OTf] (6)
A flask was charged with [Ir(ToM)(CO)2] (0.1 g, 0.16 mmol) dis-
solved in benzene (25 mL). A benzene solution of triflic acid
(1.0 mL, 0.15 M) was added and the solution was stirred overnight.
All volatile materials were removed in vacuo to provide a yellow
solid, which was washed with pentane (10 mL) and dried under
References
[1] S. Trofimenko, Scorpionates: The Coordination Chemistry of Polypyrazolylb-
orate Ligands, Imperial College Press, 1999.
[2] C.K. Ghosh, W.A.G. Graham, J. Am. Chem. Soc. 109 (1987) 4726.
[3] M.C. Keyes, V.G. Young Jr., W.B. Tolman, Organometallics 15 (1996) 4133.
[4] E. Teuma, F. Malbosc, V. Pons, C. Serra-Le Berre, J. Jaud, M. Etienne, P. Kalck, J.
Chem. Soc., Dalton Trans. (2001) 2225.
[5] C.K. Ghosh, W.A.G. Graham, J. Am. Chem. Soc. 111 (1989) 375.
[6] B. Baird, A.V. Pawlikowski, J. Su, J.W. Wiench, M. Pruski, A.D. Sadow, Inorg.
Chem. 47 (2008) 10208.
[7] (a) R.G. Ball, C.K. Ghosh, J.K. Hoyano, A.D. McMaster, W.A.G. Graham, J. Chem.
Soc., Chem. Commun. (1989) 341;
vacuum. Compound
0.10 mmol). 1H NMR (tetrahydrofuran-d8, 700 MHz): d 1.43 (s,
6 H, Ir ), 1.50 (s, 6 H, H ), 1.51 (s, 6 H,
6 was isolated in 63% yield (0.080 g,
NCMe2CH2OC
NCMe2CH2OC
), 4.57 (d, 2 H,
Ir
), 4.36 (m, 4 H,
NCMe2CH2OC
NCMe2CH2OC
NCMe2CH2OC
3
Ir
), 7.09 (d, 2 H, JHH = 8.8 Hz, ortho-C6H5), 7.13–
7.20 (m, 3 H, para- and meta-C6H5), 11.92 (s, 1 H, NH). 13C{1H}
(b) M. Bovens, T. Gerfin, V. Gramlich, W. Petter, L.M. Venanzi, M.T. Haward, S.A.
Jackson, O. Eisenstein, New J. Chem. 16 (1992) 337;
NMR (tetrahydrofuran-d8, 125 MHz): 26.57 ),
d
(
NCMe2CH2OC
(c) J.S. Wiley, D.M. Heinekey, Inorg. Chem. 41 (2002) 4961.
[8] R.E. Cowley, R.P. Bontchev, E.N. Duesler, J.M. Smith, Inorg. Chem. 45 (2006)
9771.
[9] V. Chauby, J.C. Daran, C. Serra-Le Berre, F. Malbosc, P. Kalck, O.D. Gonzalez, C.E.
Haslam, A. Haynes, Inorg. Chem 41 (2002) 3280.
[10] L.H. Gade, G. Marconi, C. Dro, B.D. Ward, M. Poyatos, S. Bellemin-Laponnaz, H.
Wadepohl, L. Sorace, G. Poneti, Chem. Eur. J. 13 (2007) 3058.
[11] J.F. Dunne, J.C. Su, A. Ellern, A.D. Sadow, Organometallics 27 (2008) 2399.
[12] L.-H. Gao, M. Guan, K.-Z. Wang, L.-P. Jin, C.-H. Huang, Eur. J. Inorg. Chem.
(2006) 3731.
[13] (a) E.J. Duff, M.N. Hughes, K.J. Rutt, J. Chem. Soc. A (1969) 2126;
(b) E.J. Duff, M.N. Hughes, J. Chem. Soc. A (1969) 477.
[14] G. Ponticelli, M. Massacesi, B.A. Sastry, B. Balaiah, R. Subramanian, M.N. Chary,
Indian J. Pure Appl. Phys. 24 (1986) 206.
[15] G. Devoto, M. Biddau, M. Massacesi, R. Pinna, G. Ponticelli, L.V. Tat’yanenko, I.A.
Zakharova, J. Inorg. Biochem. 19 (1983) 311.
[16] E. Wehman, G. Van Koten, J.T.B.H. Jastrzebski, M.A. Rotteveel, C.H. Stam,
Organometallics 7 (1988) 1477.
[17] A.L. Gott, G.J. Clarkson, R.J. Deeth, M.L. Hammond, C. Morton, P. Scott, J. Chem.
Soc., Dalton Trans. (2008) 2983.
27.92
(
),
28.50
(
),
63.89
NCMe2CH2OC
NCMe2CH2OC
(
), 70.54
(
), 82.58
(
),
NCMe2CH2OC
NCMe2CH2OC
NCMe2CH2OC
1
83.48 (
NCMe2CH2OC
), 121.93 (q, JFC = 320 Hz, OSO2CF3), 127.46
(para-C6H5), 128.57 (meta-C6H5), 133.78 (ortho-C6H5), 174.20
(CO). 15N{1H} NMR (tetrahydrofuran-d8, 71 MHz): d ꢁ207.1 (N–
H), ꢁ161.4 (N–Ir). 11B NMR (tetrahydrofuran-d8, 128 MHz): d
ꢁ16.6. 19F NMR (tetrahydrofuran-d8, 376 MHz): d ꢁ79.8. IR (KBr,
cmꢁ1):
m 3237 (br w), 2974 (m), 2933 (w), 2880 (w sh), 2067 (s),
1990 (s), 1584 (br s), 1464 (m), 1434 (w), 1392 (w), 1373 (w),
1295 (s), 1248 (s), 1208 (w), 1164 (m), 1043 (m), 1030 (m), 967
(w). Anal. Calc. for C24H32BF3IrN3O8S: C, 36.83; H, 4.12; N, 5.37.
Found: C, 36.61; H, 4.10; N, 5.14%. mp 76–85 °C, dec.
[18] (a) S.G.A. van Assema, C.G.J. Tazelaar, G. Bas de Jong, J.H. van Maarseveen, M.
Schakel, M. Lutz, A.L. Spek, J.C. Slootweg, K. Lammertsma, Organometallics 27
(2008) 3210;
5. Details of the density functional theory calculations
(b) D.L. Reger, J.R. Gardinier, T.C. Grattan, M.D. Smith, J. Organomet. Chem. 690
(2005) 1901;
(c) H. Mueller, B. Bauer-Siebenlist, E. Csapo, S. Dechert, E. Farkas, F. Meyer,
Inorg. Chem. 47 (2008) 5278;
(d) I. Krummenacher, H. Rueegger, F. Breher, J. Chem. Soc., Dalton Trans. (2006)
1073.
All calculations were performed with the NWChem software
suite [25]. Density functional theory (DFT) was employed using
the B3LYP [22] hybrid functional to obtain optimized geometries
and frequencies (see Supplementary material). Energies were also
calculated using DFT with the B3LYP functional and include the
zero point energy correction. The Los Alamos double-f ECP
(LANL2DZ) [26] was used for iridium and the 6ꢁ311+G* [27] basis
set was used for all other atoms. Linear dependencies were deter-
mined using a tolerance of 5 ꢂ 10ꢁ7 for the orbital overlap. Orbitals
with overlap values greater than this threshold were deemed line-
arly dependent and subsequently removed. Additionally, the en-
ergy convergence was tightened to 10ꢁ11 hartree. All structures
reported have positive second derivatives with respect to coordi-
nates, indicating that they are all minima on the potential energy
[19] B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F.
Barragan, S. Alvarez, J. Chem. Soc., Dalton Trans. (2008) 2832.
[20] (a) U.E. Bucher, A. Currao, R. Nesper, H. Ruegger, L.M. Venanzi, E. Younger,
Inorg. Chem. 34 (1995) 66;
(b) T.O. Northcutt, R.J. Lachicotte, W.D. Jones, Organometallics 17 (1998) 5148;
(c) M. Akita, K. Ohta, Y. Takahashi, S. Hikichi, Y. Moro-oka, Organometallics 16
(1997) 4121;
(d) M. Akita, M. Hashinoto, S. Hikichi, Y. Moro-oka, Organometallics 19 (2000)
3744.
[21] C. Foltz, D. Enders, S. Bellemin-Laponnaz, H. Wadepohl, L.H. Gade, Chem. Eur. J.
13 (2007) 5994.
[22] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 5648;
(b) C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.