A. Duraud, M. Toffano, J.-C. Fiaud
SHORT COMMUNICATION
Acknowledgments
We gratefully acknowledge financial support from the Ministère de
l’Enseignement Supérieur et de la Recherche.
[1] For recent reviews on metal-catalyzed P–H activation, see: a)
O. Delacroix, A. C. Gaumont, Curr. Org. Chem. 2005, 9, 1851–
1882; b) F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004,
104, 3079–3160.
Figure 2. RhP2(cod)Cl complex A.
[2] L. Coudray, J.-L. Montchamp, Eur. J. Org. Chem. 2008, 3601–
With this in mind, we tentatively propose the mechanism
described in Scheme 2 for the rhodium-catalyzed hydro-
phosphinylation reaction. Complexes A and B resulting
from coordination and oxidative addition of 1 to [Rh(cod)-
Cl]2, respectively, would be in equilibrium. Insertion of the
acetylenic substrate into the Rh–H bond of B would offer
vinylic complex C. The [Rh]–C bond being cleaved by a
further molecule of 1. Complex B should be a minor and a
very reactive complex rapidly undergoing alkyne insertion.
This would explain the absence of the signal of the hydride
proton in the spectra when monitoring the reaction by
NMR spectroscopy.
3613.
[3] For examples of metal-catalyzed hydrophosphination, see: a)
D. Mimeau, A.-C. Gaumont, J. Org. Chem. 2004, 68, 7016–
7022; b) H. Ohmiya, H. Yorimitsu, K. Oshima, Angew. Chem.
2005, 117, 2420–2422; Angew. Chem. Int. Ed. 2005, 44, 2368–
2370; c) A. M. Kawaoka, M. R. Douglas, T. J. Marks, Organo-
metallics 2003, 22, 4630–4632; d) F. Jérôme, F. Monnier, H.
Lawicka, S. Dérien, P. H. Dixneuf, Chem. Commun. 2003, 696–
697; e) M. Hayashi, Y. Matsuura, Y. Watanabe, J. Org. Chem.
2006, 71, 9248–9251.
[4] For the synthesis of phosphonates by metal-catalyzed hydro-
phosphorylation, see: a) C.-Q. Zhao, L. B. Han, M. Goto, M.
Tanaka, Angew. Chem. 2001, 113, 1983–1986; Angew. Chem.
Int. Ed. 2001, 40, 1929–1932; b) L. B. Han, M. Tanaka, J. Am.
Chem. Soc. 1996, 118, 1571–1572; c) N. S. Goulioukina, T. M.
Dolgina, I. P. Beletskaya, J.-C. Henry, D. Lavergne, V. Ratovel-
omanana-Vidal, J.-P. Genet, Tetrahedron: Asymmetry 2001, 12,
319–327; d) L. B. Han, C. Zhang, H. Yazawa, S. Shimada, J.
Am. Chem. Soc. 2004, 126, 5080–5081.
[5] For the synthesis of phosphinates by metal-catalyzed hydro-
phosphinylation, see: a) S. Kumar Nune, M. Tanaka, Chem.
Commun. 2007, 2858–2860; b) L. B. Han, Y. Ono, H. Yazawa,
Org. Lett. 2005, 7, 2909–2911.
[6] For the synthesis of H-phosphinates by metal-catalyzed hydro-
phosphinylation, see: a) S. Deprèle, J.-L. Montchamp, J. Am.
Chem. Soc. 2002, 124, 9386–9387; b) P. Ribière, K. Bravo-Alta-
mirano, M. I. Antczak, J. D. Hawkins, J.-L. Montchamp, J.
Org. Chem. 2005, 70, 4064–4072; c) K. Bravo-Altamiraro, J.-L.
Montchamp, Tetrahedron Lett. 2007, 48, 5755–5759.
[7] For the synthesis of phosphane oxides by metal-catalyzed hy-
drophosphinylation, see: a) L. B. Han, N. Choi, M. Tanaka,
Organometallics 1996, 15, 3259–3261; b) L. B. Han, R. Huia,
M. Tanaka, Angew. Chem. 1998, 110, 98–101; Angew. Chem.
Int. Ed. 1998, 37, 94–96; c) L.-B. Han, C.-Q. Zhao, M. Tanaka,
J. Org. Chem. 2001, 66, 5929–5932; d) N. Dobashi, K. Fuse, T.
Hoshino, J. Kanada, T. Kashiwabara, C. Kobata, S. Nune, M.
Tanaka, Tetrahedron Lett. 2007, 48, 4669–4673; e) M. Niu, H.
Fu, Y. Jian, Chem. Commun. 2007, 272–274; f) A. Allen, L.
Ma, W. Lin, Tetrahedron Lett. 2002, 43, 3707–3710.
[8] L. B. Han, C.-Q. Zhao, S.-Y. Onozawa, M. Goto, M. Tanaka,
J. Am. Chem. Soc. 2002, 124, 3842–3843.
Scheme 2. Proposed mechanism for hydrophosphinylation.
[9] B. Join, D. Mimeau, O. Delacroix, A.-C. Gaumont, Chem.
Commun. 2006, 3249–3251.
[10] a) M. Toffano, C. Dobrota, J.-C. Fiaud, Eur. J. Org. Chem.
2006, 650–656; b) F. Guillen, M. Rivard, M. Toffano, J.-Y.
Legros, J.-C. Daran, J.-C. Fiaud, Tetrahedron 2002, 58, 5895–
5904.
[11] a) C. Dobrota, M. Toffano, J.-C. Fiaud, Tetrahedron Lett.
2004, 45, 8153–8156; b) A. Galland, C. Dobrota, M. Toffano,
J.-C. Fiaud, Tetrahedron: Asymmetry 2006, 17, 2354–2357; c)
A. Galland, J.-M. Paris, T. Schlama, R. Guillot, J.-C. Fiaud,
M. Toffano, Eur. J. Org. Chem. 2007, 863–876.
[12] C. Dobrota, A. Duraud, M. Toffano, J.-C. Fiaud, Eur. J. Org.
Chem. 2008, 2439–2445.
[13] The isolated yields of pure product are low despite the high
yields determined by NMR spectroscopy. This result is due to
the degradation of product on silica gel.
Conclusions
The mechanism of the hydrophosphinylation of alkynes
by using chiral enantiopure phospholane oxide 1 is still not
clear. However, in most cases, the reactions are selective
particularly when catalyzed with a palladium complex. This
strategy is applicable to a variety of alkynes and offers rapid
access to chiral enantiopure α- or β-substituted vinylphos-
pholane.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data and copies of
[14] In solution, secondary phosphane oxides exist in equilibrium
between pentavalent (phosphane oxide form) and trivalent
1
the H, 13C and 31P NMR spectra.
4402
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 4400–4403