10.1002/asia.202000064
Chemistry - An Asian Journal
COMMUNICATION
Org. Chem. 1983, 48, 1811. (c) K. C. Nicolaou, A. F. Stepan, T. Lister,
A. Li, A. Montero, G. S. Tria, C. I. Turner, Y. Tang, J. Wang, R. M.
Denton, D. J. Edmonds, J. Am. Chem. Soc. 2008, 130, 13110. (d) D.
Liotta, M. Saindane, C. Barnum, J. Am. Chem. Soc. 1981, 103, 3224.
For selected examples of Michael addition reactions of quinols, see: (a)
T. J. Brocksom, F. Coelho, J. P. Deprés, A. E. Greene, M. E. Freire de
Lima, O. Hamelin, B. Hartmann, A. M. Kanazawa, Y. Wang, J. Am.
Chem. Soc. 2002, 124, 15313. (b) D. Giomi, M. Piacenti, A. Brandi, Eur.
J. Org. Chem. 2005, 4649. (c) R. Imbos, M. H. G. Brilman, M. Pineschi,
B. L. Feringa, Org. Lett. 1999, 1, 623. (d) A. C. Meister, P. F. Sauter, S.
Bräse, Eur. J. Org. Chem. 2013, 7110.
of extra B2pin2 and base, secondary borylation generated
intermediate A and eventually continued to phenol 2.
[2]
[3]
For selected examples of reductive aromatization of quinols, see: (a) L.
Zhang, W. Wang, R. Fan, Org. Lett. 2013, 15, 2018. (b) M. P.
Capparelli, R. E. DeSchepper, J. S. Swenton, J. Org. Chem. 1987, 52,
4953. (c) K. A. Parker, C. A. Coburn, J. Org. Chem. 1992, 57, 5547. (d)
H. de Nijs, W. N. Speckamp, Tetrahedron Lett. 1973, 3631. (e) G. W.
Morrow, B. Schwind, Synth. Commun. 1995, 25, 265. (f) K. A. Parker, C.
A. Coburn, J. Am. Chem. Soc. 1991, 113, 8516. (g) D. Crich, X. Mo, J.
Am. Chem. Soc. 1998, 120, 8298. (h) K. Miki, M. Fujita, Y. Inoue, Y.
Senda, T. Kowada, K. J. Ohe, Org. Chem. 2010, 75, 3537. (i) F.
Glöcklhofer, M. Lunzer, J. Fröhlich, Synlett 2015, 26, 950. (j) L. A. Miller,
M. A. Marsini, T. R. R. Pettus, Org. Lett. 2009, 11, 1955. (k) K. A.
Parker, A. T. Georges, Org. Lett. 2000, 2, 497. (l) L. Wang, Z. Yan,
Synlett 2016, 27, 1602.
Scheme 5. Proposed mechanism
Several sets of know conditions for reductive aromatization of
quinols were examined with 1a to evaluate our apporach.
Exposing 1a to borane or borohydride resulted in the formation
of 2a in very low yields (<15%) along with hydroquinone 2a’
obtained as decomposited product (Figure 3). Under the
conditions developed by Parker,[3c] phenol 2a was generated in
50% yield while decomposition is still unavoidable. Better results
were given when treated with Zn/AcOH affording the desired
product in 66% yield without observation of hydroquinone but
still inferior comparing to our conditions.
[4]
For example of deoxygenation with diboron on N-oxides, carbon
dioxide and nitro group, see (a) D. S. Laitar, P. Müller, J. P. Sadighi, J.
Am. Chem. Soc. 2005, 127, 17196. (b) S. Bae, M. K. Lakshman, J. Org.
Chem. 2008, 73, 1311. (c) H. P. Kokatla, P. F. Thomson, S. Bae, V. R.
Doddi, M. K. Lakshman, J. Org. Chem. 2011, 76, 7842. (d) V. Gurram,
H. K. Akula, R. Garlapati, N. Pottabathini, M. K. Lakshman, Adv. Synth.
Catal. 2015, 357, 451. (e) J. Kim, C. R. Bertozzi, Angew. Chem., Int. Ed.
2015, 54, 15777. (f) K. Yang, F. Zhou, Z. Kuang, G. Gao, T. G. Driver,
and Q. Song. Org. Lett. 2016, 18, 4088.
2a 80%
standard
condition
Zn (2 eq.)
EtOH/AcOH 80% aq.
(1:1)
[5]
[6]
[7]
[8]
(a) N. Miralles, R. Alman, K. Szabó and E. Fernández, Angew. Chem.,
Int. Ed., 2016, 55, 4303.
NaBH4(1.5 eq.)
EtOH (0.2 M)
2a/2a'
13%/76%
2a
66%
K. Harada, M. Nogami, K. Hirano, D. Kurauchi, H. Kato, K. Miyamoto, T.
Saito and M. Uchiyama, Org. Chem. Front., 2016, 3, 565.
r.t, 12h
reflux, 8h
Ph
O
M. J. Hesse, C. P. Butts, C. L. Willis, and V. K. Aggarwal. Angew.
Chem. Int. Ed. 2012, 51, 12444.
HO
1a
Na2S2O4 (3 eq.)
THF/H2O (5:2)
BH3 Me2S(1.5 eq.)
DCE, r.t, 12h
2a/2a'
11%/83%
2a/2a'
(a) H. Chen, T. Zhang, C. Shan, S. Liu, Q. Song, R. Bai, Y. Lan, Org.
Lett., 2019, 21, 4924. (b) Z. Kuang, H. Chen, J. Yan, K. Yang, Y. Lan,
Q. Song, Org. Lett., 2018, 20, 5153. (c) S. Bhavanarushi, Y. Xu, I. Khan,
Z. Luo, B. Liu, J. Xie, Org Chem Front 2019, 6, 1895.
50%/30%
r.t, 12h
(2a' = hydroquinone)
Scheme 6. Comparison experiments
[9]
(a) D. J. Pasto, and Sr. R. Snyder, J. Org. Chem. 1966, 31, 2773. (b) D.
S. Matteson, J. D. Liedtke, J. Am. Chem. Soc. 1965, 87, 1526.
[10] H. Wu, J. M. Garcia, F. Haeffn, S. Radomkit, A. R. Zhugralin and A. H.
Generally, we have developed a mild approach for the
selective reductive aromatization of quinols using B2pin2 as
deoxidizing reagents. Cascade borylation/B-O elimination
process was suggested to furnish the formal deoxygenation
process. Moreover, this protocol had been demonstrated highly
efficient by comparison experiments.
Hoveyda, J. Am. Chem. Soc., 2015, 137, 10585
Acknowledgements
The authors acknowledge the financial support from the Natural
Science Foundation of China (21801099) and the Senior Talent
Foundation of Jiangsu University (18JDG016, 13JDG062).
Keywords: reductive aromatization • boron • deoxygenation •
quinols
[1]
For selected examples of cycloaddition reactions of quinols, see: (a) M.
Dipakranjan, R. Sutapa, Eur. J. Org. Chem. 2008, 3014. (b) F.
Fringuelli, L. Minuti, F. Pizzo, A. Taticchi, T. D. J. Halls, E. J. Wenkert,
3
This article is protected by copyright. All rights reserved.