Journal of the American Chemical Society
Article
L. O.; Incarvito, C. D.; Faller, J. W.; Brudvig, G. W.; Crabtree, R. H.
Inorg. Chem. 2009, 48, 488−495.
Goubitz, K.; Fraanje, J.; Schenk, H.; Bo, C. J. Am. Chem. Soc. 1998,
120, 11616−11626. (b) Kamer, P. C. J.; van Rooy, A.; Schoemaker, G.
C.; van Leeuwen, P. W. N. M. Coord. Chem. Rev. 2004, 248, 2409−
2424. (c) Kubis, C.; Ludwig, R.; Sawall, M.; Neymeyr, K.; Borner, A.;
Wiese, K. D.; Hess, D.; Franke, R.; Selent, D. ChemCatChem 2010, 2,
287−295. (d) Diebolt, O.; van Leeuwen, P. W. N. M.; Kamer, P. C. J.
ACS Catal. 2012, 2, 2357−2370.
(11) (a) Smejkal, T.; Gribkov, D.; Geier, J.; Keller, M.; Breit, B.
Chem.-Eur. J. 2010, 16, 2470−2478. (b) Smejkal, T.; Breit, B. Angew.
Chem., Int. Ed. 2008, 47, 311−315.
(12) (a) Fackler, P.; Berthold, C.; Voss, F.; Bach, T. J. Am. Chem. Soc.
2010, 132, 15911−15913. (b) Fackler, P.; Huber, S. M.; Bach, T. J.
Am. Chem. Soc. 2012, 134, 12869−12878.
(24) For details, see the Supporting Information.
(13) (a) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B.
J. Am. Chem. Soc. 2010, 132, 10891−10902. (b) Zhu, S.; Ruppel, J. V.;
Lu, H.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2008, 130, 5042−
5043.
(14) (a) Breuil, P.-A. R.; Patureau, F. W.; Reek, J. N. H. Angew.
Chem., Int. Ed. 2009, 48, 2162−2165. (b) Breuil, P.-A. R.; Reek, J. N.
H. Eur. J. Org. Chem. 2009, 6225−6230. (c) Dydio, P.; Rubay, C.;
Gadzikwa, T.; Lutz, M.; Reek, J. N. H. J. Am. Chem. Soc. 2011, 133,
17176−17179.
(25) For the description of effective concentrations and of
multivalency in supramolecular chemistry, see: Mulder, A.; Huskens,
J.; Reinhoudt, D. N. Org. Biomol. Chem. 2004, 2, 3409−3424.
(26) Blackmond, D. G. Angew. Chem., Int. Ed. 2005, 44, 4302−4320.
(27) Copeland, R. A. Enzymes: A Practical Introduction to Structure,
Mechanism, and Data Analysis; Wiley-VCH: New York, 2000.
(28) The effective concentration for substrate 8a bound to the DIM
pocket of the catalyst can be roughly estimated: (i) for the initial
concentrations used and the association constant of Ka > 105 M−1, the
DIM pocket is nearly fully occupied by the substrate (>99.995%); (ii)
the maximal distance between the Rh center and the alkene in the
supramolecular complexes is about 15 Å; thus the “probing volume” is
about 1.7 × 10−24 dm3, which translates to the effective concentration
Ceff ≈ 0.9 M. With this rough estimate, one can understand that the
nonbound substrate present in 0.2 M will considerably compete with
the bound substrate. For comparison, for substrate 2a, with the
maximal Rh−alkene distance of 8Å, the effective concentration is
estimated to Ceff ≈ 6 M, which is substantially higher than the actual
alkene concentration in solution (0.2 M), hence allowing for the
effective competition. For a detailed discussion on the influence of the
effective concentrations, see ref 25.
(15) (a) Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion Receptor
Chemistry; Royal Society of Chemistry: Cambridge, 2006. (b) Dydio,
P.; Lichosyt, D.; Jurczak, J. Chem. Soc. Rev. 2011, 40, 2971−2985.
(c) Wenzel, M.; Hiscock, J. R.; Gale, P. A. Chem. Soc. Rev. 2012, 41,
480−520.
(16) (a) Dydio, P.; Zielin
4560−4562. (b) Dydio, P.; Zielin
1076−1078. (c) Jurczak, J.; Chmielewski, M. J.; Dydio, P.; Lichosyt,
D.; Ulatowski, F.; Zielin
́
́
́
ski, T. Pure Appl. Chem. 2011, 83, 1543−1554.
́
(d) Dydio, P.; Lichosyt, D.; Zielinski, T.; Jurczak, J. Chem.-Eur. J. 2012,
18, 13686−13701.
(17) (a) van Leeuwen, P. W. N. M.; Claver, C. Rhodium Catalyzed
Hydroformylation; Kluwer Academic Publishers: Dordrecht, 2000.
(29) Horiuchi, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. Organo-
metallics 1997, 16, 2981−2986.
(b) Franke, R.; Selent, D.; Borner, A. Chem. Rev. 2012, 112, 5675−
̈
5732. (c) Breit, B.; Seiche, W. Synthesis 2001, 2001, 1−36.
(30) We started a search for possible conformations of the substrate−
catalyst complex for both eq−eq and eq−ax coordination geometries,
using a simplified model with a ligand in which the 4 phenyl rings were
removed from the phosphine. Subsequently, the structures lowest in
energy were supplemented with the phenyl rings and optimized again.
(The geometries with much higher energies, >16 kJ mol−1, were
omitted.) For full computational details, see the Supporting
Information.
(18) For regioselective hydroformylation of unfunctionalized internal
alkenes, see: (a) Kuil, M.; Soltner, T.; van Leeuwen, P. W. N. M.;
Reek, J. N. H. J. Am. Chem. Soc. 2006, 128, 11344−11345. For regio-
and enantioselective hydroformylation of unfunctionalized internal
alkenes, see: (b) Bellini, R.; Chikkali, S. H.; Berthon-Gelloz, G.; Reek,
J. N. H. Angew. Chem., Int. Ed. 2011, 50, 7342−7345. (c) Gadzikwa,
T.; Bellini, R.; Dekker, H. L.; Reek, J. N. H. J. Am. Chem. Soc. 2012,
134, 2860−2863. (d) Noonan, G. M.; Fuentes, J. A.; Cobley, C. J.;
Clarke, M. L. Angew. Chem., Int. Ed. 2012, 51, 2477−2480.
(31) Despite many attempts, we were not able to find a transition
state for the formation of the branched alkyl complex from this
substrate−catalyst complex conformer.
(19) For regioselective hydroformylation of alkenes, using reversible
covalent bonding of catalytic ligand-like directing groups, see:
(32) The complex structure is distorted from the ideal coordination
geometry (a trigonal bipyramid or a square pyramid) due to the
geometrical constrains imposed by the ligand and by the substrate
bound to the phosphorus ligand (the virtually tridentate L1−2a
ligand). Consequently, the two axial positions occupied by the hydride
and CO are electronically different. Therefore, changing their positions
leads to a complex with different energy, and also modifies the
coordination geometry around the rhodium center. As indicated by the
change of the τ parameter value from 0.39 to 0.27, for geometries I
and IV, respectively, the inversion of the CO and H ligands pushes the
geometry of the metal center to a structure closer to a square pyramid
and results in its destabilization. (The τ value indicates the idealized
square pyramid with τ = 0, and the trigonal bipyramid with τ = 1). For
the description of the τ parameter, see: Addison, A. W.; Rao, T. N.;
Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans.
1984, 1349−1356.
(33) The isomerization of the internal double bond to the chain
terminus, followed by its hydroformylation, gives access to linear
products, see: (a) van der Veen, L. A.; Kamer, P. C. J.; van Leeuwen, P.
W. N. M. Angew. Chem., Int. Ed. 1999, 38, 336−338. (b) Klein, H.;
Jackstell, R.; Wiese, K.-D.; Borgmann, C.; Beller, M. Angew. Chem., Int.
Ed. 2001, 40, 3408−3411. (c) Seayad, A.; Ahmed, M.; Klein, H.;
Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676−1678.
(d) Bronger, R. P. J; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Organometallics 2003, 22, 5358−5369. (e) Yu, S.; Chie, Y.-M.; Guan,
Z.-h.; Zhang, X. Org. Lett. 2008, 10, 3469−3472. (f) Selent, D.; Franke,
(a) Grunanger, C. U.; Breit, B. Angew. Chem., Int. Ed. 2008, 47,
̈
7346−7349. (b) Grunanger, C. U.; Breit, B. Angew. Chem., Int. Ed.
̈
2010, 49, 967−970. (c) Lightburn, T. E.; Dombrowski, M. T.; Tan, K.
L. J. Am. Chem. Soc. 2008, 130, 9210−9211. (d) Worthy, A. D.;
Gagnon, M. M.; Dombrowski, M. T.; Tan, K. L. Org. Lett. 2009, 11,
2764−2767. (e) Sun, X.; Frimpong, K.; Tan, K. L. J. Am. Chem. Soc.
2010, 132, 11841−11843. (f) Lightburn, T. E.; De Paolis, O. A.;
Cheng, K. H.; Tan, K. L. Org. Lett. 2011, 13, 2686−2689. For a review
on removable directing groups in organic synthesis and catalysis, see:
(g) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450−2494
and references therein.
(20) Preliminary results of this study have been communicated:
(a) Dydio, P.; Dzik, W. I.; Lutz, M.; de Bruin, B.; Reek, J. H. N. Angew.
Chem., Int. Ed. 2011, 50, 396−400. For recent application of ligand L3
in β-selectivity hydroformylation of vinyl arenes, see: (b) Dydio, P.;
Reek, J. H. N. Angew. Chem., Int. Ed. 2013, 52, 3878−3882.
(21) For low-temperature NMR studies of a mixture of eq−eq and
eq−ax complexes, see: (a) Molina, D. A. C.; Casey, C. P.; Muller, I.;
̈
Nozaki, K.; Jakel, C. Organometallics 2010, 29, 3362−3367. (b) Gual,
̈
A.; Godard, C.; Castillon, S.; Claver, C. Adv. Synth. Catal. 2010, 352,
463−477.
(22) van der Veen, L. A.; Keeven, P. H.; Schoemaker, G. C.; Reek, J.
N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Lutz, M.; Spek, A.
L. Organometallics 2000, 19, 872−883.
(23) For high-pressure IR studies, see: (a) van der Veen, L. A.; Boele,
M. D. K.; Bregman, F. R.; Kamer, P. C. J.; van Leeuwen, P.W. N. M.;
10827
dx.doi.org/10.1021/ja4046235 | J. Am. Chem. Soc. 2013, 135, 10817−10828