Zhao et al.
JOCFeatured Article
catalytic,2i,4 and photophysical materials5 and used for mole-
cular recognition and encapsulation.2g,6
azobenzene units,16 perfluoroalkyl chains,17 and polymeriz-
able methyl methacrylate units.18 However, the synthesis of
endofunctionalized two-dimensional metallacyclic complexes
has not been reported up to now. Herein we report the
synthesis of two [2 + 2] rhomboids and a hexagon with endo-
functionalized architectures via coordination-driven self-as-
sembly between di-Pt(II) acceptors and an endofunctionalized
bipyridyl donor ligand.
To date, three methods have been successfully employed to
incorporate functionalities into supramolecular metal-organ-
ic assemblies. First, the functional moieties can be incorpo-
rated into the edge or corner of a building block. In this way,
numerous functional moieties including porphyrin,7 diaza-
crown ether,8 cavitand,9 carborane,10 and chiral metallocor-
ners7b,11 have been introduced into the supramolecular archi-
tectures. Furthermore, covalently grafting a functional moiety
on the exterior surface of an angle-directed building block has
resulted in a large number of discrete supramolecular metal-
organic assemblies peripherally functionalized with dendri-
mers,12 ferrocene,3d,13 crown ethers, and pseudorotaxanes.14
Lastly, the interior surface of self-assembled suprastructures
can also be decorated via covalent attachment of a functional
moiety on the concave side of a directional building block.
Fujita and co-workers have synthesized a variety of three-
dimensional endofunctionalized M12L24 cuboctahedra, which
are interiorly decorated by oligo(ethylene oxide) chains,15
Results and Discussion
Synthesis of 120° Endo-Functionalized Donor Ligand. As
shown in Scheme 1, the new endofunctionalized 120° donor
ligand was synthesized by use of 4-hydroxy-3,5-diiodobenzoic
acid as the starting material, which was protected as an ester
and subsequently reacted with 4-nitrobenzyl bromide to pro-
duce the endofunctionalized diiodo complex. Sonogashira
coupling of this diiodo complex with 4-ethynylpyridine in the
presence of catalytic Pd(PPh3)2Cl2 afforded the desired endo-
functionalized 120° donor ligand 1 in a reasonable yield (63%).
Self-Assembly and NMR Studies. The endofunctionalized
polygonal structures (5-7) were prepared by use of two
different 60° phenanthrene (2 and 3) and a 120° ketone (4)
di-Pt(II) ligand as acceptors and donor ligand 1 (Scheme 2).
The small self-assembled [2 + 2] rhomboid 5 was made by
mixing the donor ligand 1 with acceptor 2 in a 1:1 ratio in
CD2Cl2. The 31P{1H} NMR spectrum of 5 showed a single
peak at 12.58 ppm with concomitant 195Pt satellites, upfield
shifted by roughly 6.5 ppm compared with the 60° phenan-
threne acceptor ligand 2 (δ = 19.09 ppm) as a result of the co-
ordination of the pyridine rings (Figure 1). This indicates that
only one discrete supramolecular structure exists in the result-
ing solution. In the proton NMR spectrum of 5, the R- and β-
pyridyl hydrogen signals both experience significant downfield
shifts compared with their chemical shifts in the precursor
building block 1, which are associated with the loss of electron
density upon coordination by the nitrogen lone pair to the
platinum metal centers (Figure 2). It is notable that the doublet
peak at δ=8.65 ppm corresponding to the R-protons of the
pyridyl ring in 1 is split into a pair of doublets (R0 and R00) upon
self-assembly. This is due to restricted rotation around the
Pt-N coordination bond analogous to previous observations
and reports.19 On the other hand, the rather large chemical shift
difference between the two pyridine R-protons (Δδ=0.8 ppm)
in 5 is much larger than the differences (approximately 0.2 ppm)
in several previously reported rhomboid, triangle, and rectan-
(4) (a) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.
(b) Caulder, D. L.; Raymond, K. N. J. Chem. Soc., Dalton Trans. 1999, 1185.
(c) Yoshizawa, M.; Takeyama, Y.; Kusukawa, T.; Fujita, M. Angew. Chem.,
Int. Ed. 2002, 41, 1347. (d) Murase, T.; Sato, S.; Fujita, M. Angew. Chem., Int.
Ed. 2007, 46, 1083. (e) Ulmann, P. A.; Braunschweig, A. B.; Lee, O.-S.;
Wiester, M. J.; Schatz, G. C.; Mirkin, C. A. Chem. Commun. 2009, 5121.
ꢀ
(5) (a) Slone, R. V.; Beenkstein, K. D.; Belanger, S.; Hupp, J. T.; Guzei
I. A.; Reinghold, A. L. Coord. Chem. Rev. 1998, 171, 221. (b) Wurthner, F.;
You, C. C.; Saha-Moller, C. R. Chem. Soc. Rev. 2004, 33, 133. (c) Wurthner,
F. Chem. Commun. 2004, 1564. (d) Balzani, V.; Bergamini, G.; Campagna, S.;
Puntoriero, F. Top. Curr. Chem. 2007, 280, 1. (e) Cooke, M. W.; Chartrand,
D.; Hanan, G. S. Coord. Chem. Rev. 2008, 252, 903.
(6) (a) Malina, J.; Hannon, M. J.; Brabec, V. Chem.-Eur. J. 2007, 13,
3871. (b) Suh, M. P.; Cheon, Y. E.; Lee, E. Y. Coord. Chem. Rev. 2008, 252,
1007.
(7) (a) Drain, C. M.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1994,
2313. (b) Fan, J.; Whiteford, J. A.; Olenyuk, B.; Levin, M. D.; Stang, P. J.;
Fleischer, E. B. J. Am. Chem. Soc. 1999, 121, 2741. (c) Fujita, N.; Biradha,
K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. Angew. Chem., Int. Ed. 2001,
40, 1718. (d) Merlau, M. L.; del Pilar Mejia, M.; Nguyen, S. T.; Hupp, J. T.
Angew. Chem., Int. Ed. 2001, 40, 4239. (e) You, C.-C.; Dobrawa, R.; Saha-
€
€
€
€
€
Moller, C. R.; Wurthner, F. Top. Curr. Chem. 2005, 258, 39.
(8) (a) Chi, K.-W.; Addicott, C.; Stang, P. J. J. Org. Chem. 2004, 69, 2910.
(b) Huang, F.; Yang, H.-B.; Das, N.; Maran, U.; Arif, A. M.; Gibson, H. W.;
Stang, P. J. J. Org. Chem. 2006, 71, 6623.
(9) (a) Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J.
J. Org. Chem. 2006, 71, 4155. (b) Liu, S.; Gibb, B. C. Chem. Commun. 2008,
3709.
(10) (a) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A.
M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am.
Chem. Soc. 2005, 127, 12131. (b) Das, N.; Stang, P. J.; Arif, A. M.; Campana,
C. F. J. Org. Chem. 2005, 70, 10440. (c) Dou, J.; Su, F.; Nie, Y.; Li, D.; Wang,
D. Dalton Trans. 2008, 4152.
(11) (a) Oenyuk, B.; Whiteford, J. A.; Stang, P. J. J. Am. Chem. Soc. 1996,
118, 8221. (b) Lee, S. J.; Lin, W. J. Am. Chem. Soc. 2002, 124, 4554. (c) Lee,
S. J.; Kim, J. S.; Lin, W. Inorg. Chem. 2004, 43, 6579. (d) Lee, S. J.; Hu, A.;
Lin, W. J. Am. Chem. Soc. 2002, 124, 12948. (e) Das, N.; Ghosh, A.; Singh,
O. M.; Stang, P. J. Org. Lett. 2006, 8, 1701. (f) Lee, S. J.; Lin, W. Acc. Chem.
Res. 2008, 41, 521.
(12) (a) Yang, H.-B.; Hawkridge, A. M.; Huang, S. D.; Das, N.; Bunge,
S. D.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 2120.
(b) Grimm, F.; Hartnagel, K.; Wessendorf, F.; Hirsch, A. Chem. Commun.
2009, 1331.
gle structures.20 This may be due to the C-H O hydrogen
3 3 3
bonding between the oxygen atom of the endo nitro group and
the R hydrogen atom of the pyridine ring. This is supported by
(16) (a) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem.
Soc. 2005, 127, 11950. (b) Murase, T.; Sato, S.; Fujita, M. Angew. Chem., Int.
Ed. 2007, 46, 5133.
(17) Sato, S.; Iida, J.; Suzuki, K.; Kawano, M.; Ozeki, T.; Fujita, M.
Science 2006, 313, 1273.
(13) (a) Sun, S.-S.; Lees, A. J. Inorg. Chem. 2001, 40, 3154. (b) van
Staveren, D. R.; Metzler-Nolte, N. Chem. Rev. 2004, 104, 5931. (c) Shoji,
O.; Okada, S.; Satake, A.; Kobuke, Y. J. Am. Chem. Soc. 2005, 127, 2201.
(d) Chebny, V. J.; Dhar, D.; Lindeman, S. V.; Rathore, R. Org. Lett. 2006, 8,
5041. (e) Collinson, M. M. Acc. Chem. Res. 2007, 40, 777. (f) Ghosh, K.;
Zhao, Y.; Yang, H.-B.; Northrop, B. H.; White, H. S.; Stang, P. J. J. Org.
Chem. 2008, 73, 8553.
(18) Murase, T.; Sato, S.; Fujita, M. Angew. Chem., Int. Ed. 2007, 46,
1083.
(19) (a) Caskey, D. C.; Yamamoto, T.; Addicott, C.; Shoemaker, R. K.;
Vacek, J.; Hawkridge, A. M.; Muddiman, D. C.; Kottas, G. S.; Michl, J.;
Stang, P. J. J. Am. Chem. Soc. 2008, 130, 7620. (b) Vacek, J.; Caskey, D. C.;
Horinek, D.; Shoemaker, R. K.; Stang, P. J.; Michl, J. J. Am. Chem. Soc.
ꢀ
ꢀ
ꢀ
ꢀ
2008, 130, 7629. (c) Tarkanyi, G.; Jude, H.; Palinkas, G.; Stang, P. J. Org.
(14) Ghosh, K.; Yang, H.-B.; Northrop, B. H.; Lyndon, M. M.; Zheng,
Y.-R.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 5320.
(15) Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa, T.; Ozeki, T.;
Sakamoto, S.; Yamaguchi, K.; Fujita, M. Angew. Chem., Int. Ed. 2004, 43,
5621.
Lett. 2005, 7, 4971.
(20) (a) Kryschenko, Y. K.; Seidel, S. R.; Arif, A. M.; Stang, P. J. J. Am.
Chem. Soc. 2003, 125, 5193. (b) Addicott, C.; Das, N.; Stang, P. J. Inorg.
€
Chem. 2004, 43, 5335. (c) Northrop, B. H.; Glockner, A.; Stang, P. J. J. Org.
Chem. 2008, 73, 1787.
J. Org. Chem. Vol. 74, No. 22, 2009 8517