2354
J. Ishihara et al.
LETTER
mmol of TMSCl) was added to a mixture of dried InCl3 (158
mg, 0.72 mmol) and In (82 mg, 0.72 mmol) in MeCN (2
mL). To the stirred mixture was added a solution of 4d (100
mg, 0.36 mmol) in MeCN (3 mL) and the reaction mixture
was stirred at 10–30 °C for 3 h under ultrasonication. The
stirred mixture was diluted with sat. NH4Cl (4 mL), and the
aqueous layer was extracted with EtOAc (2 × 20 mL).
Drying over MgSO4, concentration, and silica gel
lation with TMSCl. Since no rearrangement was observed
in the absence of TMSCl, the direct rearrangement of in-
dium enolates would be unlikely to occur. Finally, the
rearrangement of 27 would proceed to generate the corre-
sponding carboxylic acid. In the case of 4a–c, the a-indi-
um intermediates would be so reactive that they would to
be easily protonated.
chromatography (SiO2: 14 g; hexane–EtOAc, 10:1) afforded
5d (55 mg, 0.31 mmol, 80%) and 6d (5.3 mg, 0.03 mmol,
7%).
In conclusion, we have demonstrated a new indium-medi-
ated Reformatsky–Claisen rearrangement of substituted
allyl bromodimethylacetates.9,10 The present method can
be applicable to the substrates having a base-sensitive
group (e.g. AcO), unlike the Ireland–Claisen rearrange-
ment. In addition, this method enables us to create func-
tionalized quaternary centers. Further exploration of this
chemistry is underway in our laboratory.
(10) 2: IR (neat): 3400(br), 2940, 2859, 1702, 1448, 1255, 1051,
925, 844, 761 cm–1. 1H NMR (400 MHz, CDCl3): d = 5.70–
5.81 (m, 1 H), 5.08 (d, J = 16.8 Hz, 1 H), 5.04 (d, J = 11.6
Hz, 1 H), 2.28 (d, J = 7.6 Hz, 2 H), 1.62–1.58 (m, 4 H), 1.35–
1.46 (m, 2 H), 1.26–1.30 (m, 4 H). 13C NMR (100 MHz,
CDCl3): d = 182.6, 133.3, 117.7, 47.1, 44.3, 33.4, 25.3, 22.9.
MS (EI): m/z = 123, 168 [M+]. HRMS (EI): m/z [M+] calcd
for C10H16O2: 168.1151; found: 168.1126.
5d: IR (neat): 3200(br), 2981, 1744, 1700, 1467, 1367, 1243,
1162, 1039, 929, 686, 606 cm–1. 1H NMR (300 MHz,
CDCl3): d = 5.64 (dt, J = 16.8, 10.4 Hz, 1 H), 5.21 (dd, J =
10.4, 1.6 Hz, 1 H), 5.19 (dd, J = 16.8, 0.6 Hz, 1 H), 4.03–4.20
(m, 2 H), 2.77–2.82 (m, 1 H), 2.00 (s, 3 H), 1.17 (s, 6 H).
13C NMR (75 MHz, CDCl3): d = 183.4, 170.8, 134.0, 119.7,
63.9, 49.7, 43.2, 24.4, 20.2. MS (EI): m/z = 200 [M+]. HRMS
(EI): m/z [M+] calcd for C10H16O4: 200.1048; found:
200.1027.
Acknowledgment
This work was financially supported by a Grants-in-Aid for Scien-
tific Research from the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan (17590009) and by a Grant-in-Aid for
Scientific Research from the President of Nagasaki University.
References and Notes
8a: IR (neat): 2979, 1708, 1455, 1364, 1272, 1104, 923, 848,
737, 698, 605 cm–1. 1H NMR (300 MHz, CDCl3): d = 7.21–
7.35 (m, 5 H), 5.67 (dt, J = 17.8, 9.3 Hz, 1 H), 5.15–5.21 (m,
2 H), 4.47 (s, 2 H), 3.47 (dd, J = 15.9, 8.8 Hz, 2 H), 2.79 (dd,
J = 15.9, 6.6 Hz, 1 H), 1.16 (s, 3 H), 1.13 (s, 3 H). 13C NMR
(75 MHz, CDCl3): d = 183.7, 138.2, 135.3, 128.3, 128.3,
127.5, 119.1, 72.9, 70.5, 50.7, 43.5, 24.8, 20.4. MS (EI):
m/z = 248 [M+]. HRMS (EI): m/z [M+] calcd for C15H20O3:
248.1413; found: 248.1397.
8b: IR (neat): 2930, 1703, 1470, 1389, 1256, 1103, 1004,
921, 837, 776, 666 cm–1. 1H NMR (300 MHz, CDCl3): d =
5.69 (ddd, J = 16.8, 10.2, 9.9 Hz, 1 H), 5.17 (dd, J = 10.2, 1.9
Hz, 1 H), 5.15 (dd, J = 16.7, 1.9 Hz, 1 H), 3.68 (t, J = 5.4 Hz,
2 H), 2.56 (dt, J = 9.3, 6.0 Hz, 1 H), 1.19 (d, J = 7.1 Hz, 6 H),
0.88 (s, 9 H), 0.05 (s, 6 H). 13C NMR (75 MHz, CDCl3): d =
183.9, 135.4, 119.0, 63.7, 52.8, 43.2, 25.9, 20.4, 18.3, –5.6.
MS (EI): m/z = 273 [M + H+]. HRMS (EI): m/z [M+] calcd
for C14H28O3Si: 272.1808; found: 272.1785.
(1) For examples, see: (a) Ziegler, F. E. Acc. Chem. Res. 1977,
10, 227. (b) Tadano, K.-I. In Studies in Natural Products
Chemistry: Stereoselective Synthesis, (Part F); Atta-Ur-
Rahman, Ed.; Elsevier: Amsterdam, 1992, 405. (c) Ito, S.;
Tsunoda, T. Pure Appl. Chem. 1994, 66, 2071.
(d) Nubbemeyer, U. Top. Curr. Chem. 2005, 244, 149.
(2) (a) For reviews, see: The Claisen Rearrangement: Methods
and Applications; Hiersemann, M.; Nubbemeyer, U., Eds.;
Wiley-VCH: Weinheim, 2007. See also: (b) Bennett, G. B.
Synthesis 1977, 589. (c) Blechert, S. Synthesis 1989, 71.
(d) Wipf, P. In Comprehensive Organic Synthesis, Vol. 5;
Trost, B. M., Ed.; Pergamon Press: Oxford, 1991, 827.
(e) Martin Castro, A. M. Chem. Rev. 2004, 104, 2939.
(3) Baldwin, J. E.; Walker, J. A. J. Chem. Soc., Chem. Commun.
1973, 117.
(4) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem.
Soc. 1976, 98, 2868.
(5) (a) Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94,
5897. (b) Ireland, R. E.; Wipf, P.; Armstrong, J. D. J. Org.
Chem. 1991, 56, 650. (c) Ireland, R. E.; Wipf, P.; Xiang,
J.-N. J. Org. Chem. 1991, 56, 3572. (d) For a review, see:
Pereira, S.; Srebnik, M. Aldrichimica Acta 1993, 26, 17.
(6) (a) Wada, M.; Shigehisa, T.; Akiba, K. Tetrahedron Lett.
1985, 26, 5191. (b) Greuter, H.; Lang, R. W.; Romann, A. J.
Tetrahedron Lett. 1988, 29, 3291. (c) Zaman, S.; Kitamura,
M.; Narasaka, K. Bull. Chem. Soc. Jpn. 2003, 76, 1055.
(d) Yang, Y.-Y.; Meng, W.-D.; Qing, F.-L. Org. Lett. 2004,
6, 4257. (e) Yang, Y.-Y.; Xu, J.; You, Z.-W.; Xu, X.-H.;
Qiu, X.-L.; Qing, F.-L. Org. Lett. 2007, 9, 5437. (f) Zheng,
F.; Zhang, X.; Qing, F.-L. Chem. Commun. 2009, 1505.
(7) Chao, L.-C.; Rieke, R. D. J. Org. Chem. 1975, 40, 2253.
(8) (a) Babu, S. A.; Yasuda, M.; Shibata, I.; Baba, A. Org. Lett.
2004, 6, 4475. (b) Babu, S. A.; Yasuda, M.; Shibata, I.;
Baba, A. J. Org. Chem. 2005, 70, 10408. (c) Babu, S. A.;
Yasuda, M.; Okabe, Y.; Shibata, I.; Baba, A. Org. Lett. 2006,
8, 3029.
8c: IR (neat): 2943, 1704, 1469, 1354, 1265, 1122, 1034,
908, 815, 685, 545 cm–1. 1H NMR (300 MHz, CDCl3): d =
5.59–5.75 (m, 1 H), 5.17 (dd, J = 17.6, 1.7 Hz, 1 H), 5.16 (dd,
J = 11.3, 2.2 Hz, 1 H), 4.59 (s, 2 H), 3.69–3.90 (m, 2 H),
3.29–3.55 (m, 2 H), 2.79 (dt, J = 6.9, 2.2 Hz, 1 H), 1.42–1.89
(m, 6 H), 1.17 (s, 3 H), 1.13 (s, 3 H). MS (EI): m/z = 243
[M + H+]. HRMS (EI): m/z [M+] calcd for C13H22O4:
242.1518; found: 242.1518.
10a: IR (neat): 2980, 1698, 1470, 1413, 1281, 1184, 926,
742, 706, 513 cm–1. 1H NMR (300 MHz, CDCl3): d = 7.20–
7.31 (m, 5 H), 6.25 (dt, J = 17.6, 9.6 Hz, 1 H), 5.15 (dd, J =
10.9, 0.6 Hz, 1 H), 5.14 (dd, J = 17.5, 0.6 Hz, 1 H), 3.63 (d,
J = 9.6 Hz, 1 H), 1.18 (s, 3 H), 1.13 (s, 3 H). 13C NMR (75
MHz, CDCl3): d = 183.9, 140.0, 136.6, 129.3, 128.0, 126.8,
117.8, 57.3, 46.7, 23.2, 21.8. MS (EI): m/z = 204 [M+].
HRMS (EI): m/z [M+] calcd for C13H16O2: 204.1150; found:
204.1146.
10b: IR (neat): 2979, 1702, 1611, 1513, 1469, 1250, 1180,
1037, 922, 832, 540 cm–1. 1H NMR (300 MHz, CDCl3): d =
7.13 (d, J = 8.8 Hz, 2 H), 6.83 (d, J = 8.8 Hz, 2 H), 6.21 (dt,
J = 17.6, 10.1 Hz, 1 H), 5.13 (d, J = 11.0 Hz, 1 H), 5.12 (dd,
(9) General Procedure: A mixture of TMSCl (0.7 mL, 5.5
mmol) and Et3N (0.7 mL, 5.0 mmol) was centrifuged at 3000
rpm for 5 min. The supernatant (0.64 mL, containing 2.5
Synlett 2009, No. 14, 2351–2355 © Thieme Stuttgart · New York