C O M M U N I C A T I O N S
Table 3. Effect of the Arylketone’s Electronics on Stereoselectivity
calculations made on non-halogenated analogues. Additional in-
sights into the mechanism of related reactions will be reported in
due course.
Acknowledgment. This work was supported by NSERC
(Canada), Merck Frosst Canada & Co., Boehringer Ingelheim
(Canada) Ltd., and the Universite´ de Montre´al. We are grateful to
F. Be´langer-Garie´py and CYLView for X-ray analysis; J. Tannous
for SFC analysis; and M. T. Phan Viet and S. Bilodeau for NMR
analysis. V.N.G.L. is grateful to NSERC (PGS D) and the Universite´
de Montre´al for postgraduate fellowships.
entry
(diazo)
yielda
(%)
drb
(cis/trans)
eec
(%, cis)
X
Y
1 (1b)
2 (1c)
3 (1a)
4 (1d)
5 (1e)
CF3
Cl
OMe
NMe2
H
H
H
H
H
80
82
81
38
72
70:30
96:4
98:2
99:1
98:2
71
92
93
96
96
OMe
Supporting Information Available: X-ray crystal structure of 3d,
experimental procedure for the preparation of compounds, and spec-
troscopic data. This material is available free of charge via the Internet
a Isolated yield of combined diastereomers. Determined by H NMR
analysis of the crude mixture. c Determined by SFC on chiral stationary
phase.
b
1
reduction of the nitro group using In/HCl in THF furnished the
cis-R-amino ester 6, a C-protected amino acid, with a minimum
loss of stereochemical information.14 Compound 6 can then be
transformed into the known N-Boc amino acid 7 through elemental
steps.2a
References
(1) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. ReV.
2003, 103, 977. (b) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Compounds: From
Cyclopropanes to Ylides; Wiley: New York, 1998. (c) Davies, H. M. L.;
Antoulinakis, E. G. Org. React. (N.Y.) 2001, 57, 1.
To gain further insight into the enantioinduction process of our
reaction, we synthesized five electronically different R-nitro diaz-
oacetophenones 1a-1e and submitted them to our reaction condi-
tions. As depicted in Table 3, electron-deficient analogue 1b
furnished decreased levels of enantioselectivity compared to our
model substrate 1a, while the more electron-rich diazo 1d afforded
superior asymmetric induction. Our working hypothesis is that the
tetrachlorophthaloyl moieties of the ellipsoidal chiral pocket induced
by the all-up symmetry of catalyst 3d (top face) could permit
π-stacking interactions with the arylketone group on the substrate,
fixing it in a conformation where one of the prochiral faces of the
carbene is blocked. With these chlorinated groups being electron-
deficient, such interactions would be more important for electron-
rich arylketones, thus providing enhanced enantioselectivity for
substrates like 1d or 1e. In addition, we noticed during our
optimization that running the reaction in aromatic solvents like
benzene led to a drastic decrease in enantioselectivity (20% ee
compared to 87% ee in Et2O), suggesting the presence of π-stacking
as a key element in the enantiodiscriminating step of the reaction.
It is noteworthy that the diastereoselectivity was also found to
be dependent on the arylketone’s electronics, confirming the
presence of Doyle’s stereoelectronic effect in our system.1b,15
Indeed, R-nitro diazoacetophenones can permit dissociation of steric
and electronic factors in the transition state, since the X group is
away from the reaction center but still strongly influences the
ketone’s oxygen basicity.
(2) (a) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J.
J. Am. Chem. Soc. 1996, 118, 6897. (b) Hansen, J.; Davies, H. M. L. Coord.
Chem. ReV. 2008, 252, 545.
(3) DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. J. Am. Chem.
Soc. 2009, 131, 7230.
(4) (a) Moreau, B.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 18014. (b)
Wurz, R. P.; Charette, A. B. Org. Lett. 2003, 5, 2327. (c) Wurz, R. P.;
Charette, A. B. J. Org. Chem. 2004, 69, 1262.
(5) Brackmann, F.; de Meijere, A. Chem. ReV. 2007, 107, 4493.
(6) (a) Beaulieu, P. L.; Gillard, J.; Bailey, M. D.; Boucher, C.; Duceppe, J. S.;
Simoneau, B.; Wang, X. J.; Zhang, L.; Grozinger, K.; Houpis, I.; Farina,
V.; Heimroth, H.; Krueger, T.; Schnaubelt, J. J. Org. Chem. 2005, 70, 5869.
(b) Lifchits, O.; Alberico, D.; Zakharian, I.; Charette, A. B. J. Org. Chem.
2008, 73, 6838. (c) Lifchits, O.; Charette, A. B. Org. Lett. 2008, 10, 2809.
(d) Wurz, R. P.; Charette, A. B. Org. Lett. 2005, 7, 2313.
(7) Charette, A. B.; Wurz, R. P.; Ollevier, T. HelV. Chim. Acta 2002, 85, 4468.
(8) For selected examples of rhodium-catalyzed enantioselective cyclopropa-
nation of diazo compounds bearing two electron-withdrawing groups, see:
(a) Marcoux, D.; Charette, A. B. Angew. Chem., Int. Ed. 2008, 47, 10155.
(b) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131,
6970. (c) Lin, W.; Charette, A. B. AdV. Synth. Catal. 2005, 347, 1547. (d)
Wurz, R.; Charette, A. B. J. Mol. Catal. A 2003, 196, 83.
(9) For other examples of catalytic asymmetric synthesis of cis-cyclopropane
amino acids, see ref 2a and: Zhu, S.; Perman, J. A.; Zhang, X. P. Angew.
Chem., Int. Ed. 2008, 47, 8460.
(10) For examples of other types of asymmetric reactions using these catalysts,
see: (a) Anada, M.; Kitagaki, S.; Hashimoto, S. Heterocycles 2000, 52,
875. (b) Hashimoto, S.; Watanabe, N.; Sato, T.; Shiro, M.; Ikegami, S.
Tetrahedron Lett. 1993, 34, 5109. (c) Anada, M.; Tanaka, M.; Washio, T.;
Yamawaki, M.; Abe, T.; Hashimoto, S. Org. Lett. 2007, 9, 4559. (d)
Shimada, N.; Anada, M.; Nakamura, S.; Nambu, H.; Tsutsui, H.; Hashimoto,
S. Org. Lett. 2008, 10, 3603.
(11) (a) The structure of 3d was also solved, and it displays a similar
conformation. (b) See Supporting Information for details.
(12) Borowiak, T.; Wolska, I.; Brycki, B.; Zielin˜ski, A.; Kowalczyk, I. J. Mol.
Struct. 2007, 833, 197.
(13) (a) Doyle, M. P.; Davies, S. B.; Hu, W. Org. Lett. 2000, 2, 1145. (b)
Charette, A. B.; Wurz, R. J. Mol. Catal. A: Chem. 2003, 196, 83. (c) Doyle,
M. P. J. Org. Chem. 2006, 71, 9253.
(14) He, L.; Srikanth, G. S. C.; Castle, S. L. J. Org. Chem. 2005, 70, 8140.
(15) (a) Doyle, M. P.; Dorow, R. L.; Buhro, W. E.; Griffin, J. H.; Tamblyn,
W. H.; Trudell, M. L. Organometallics 1984, 3, 44. (b) Doyle, M. P.;
Bagheri, V.; Wandless, T. J.; Harn, N. K.; Brinkler, D. A.; Eagle, C. T.;
Loh, K.-L. J. Am. Chem. Soc. 1990, 112, 1906. (c) O’Bannon, P. E.; Dailey,
W. P. Tetrahedron 1990, 46, 7341.
In summary, we report the first catalytic enantioselective
cyclopropanation of alkenes with R-nitro diazoacetophenones and
the corresponding products obtained from this reaction have been
shown to be practical precursors of optically active cis-cyclopropane
R-amino acids. All our experiments suggest that the halogenated
rhodium carboxylate catalysts used in this process react through
an all-up conformation, which is consistent with Fox’s DFT
JA9044955
9
J. AM. CHEM. SOC. VOL. 131, NO. 45, 2009 16385