M. Wohlfahrt, K. Harms, U. Koert
FULL PAPER
Experimental Section
Representative Allylboration of a vic-Tricarbonyl Compound (40 +
13 Ǟ 42): Boronic ester 40 (2.76 g, 3.65 mmol) was added to diethyl
mesoxolate (13; 1.4 mL, 9.13 mmol), and the mixture was stirred
in a sealed tube at 20 °C for 9 d. The reaction mixture was sub-
jected to chromatographic purification (silica gel, 150 g; pentane/
acetone, 20:1) to yield olefin 42 (2.02 g, 5.40 mmol, 85%) as a col-
orless oil. TLC (pentane/acetone, 20:1): Rf = 0.31. 1H NMR
(300 MHz, CDCl3): δ = 5.64 (dq, J = 15.3, 6.4 Hz, 1 H, 4Ј-CH),
5.35 (ddd, J = 15.4, 9.4, 1.6 Hz, 1 H, 3Ј-CH), 4.36–4.11 (m, 5 H,
2 OCH2CH3, 2-OH), 3.73 (dd, J = 10.0, 7.6 Hz, 1 H, 1Ј-CHaHb),
3.61 (dd, J = 9.9, 5.8 Hz, 1 H, 1Ј-CHaHb), 3.24 (ddd, J = 9.2, 7.5,
5.9 Hz, 1 H, 2Ј-CH), 1.63 (dd, J = 6.4, 1.5 Hz, 3 H, 4Ј-CH3), 1.27
(t, J = 7.2 Hz, 3 H, OCH2CH3), 1.24 (t, J = 7.2 Hz, 3 H,
OCH2CH3), 0.92 [t, J = 7.8 Hz, 9 H, Si(CH2CH3)3], 0.56 [q, J =
7.9 Hz, 6 H, Si(CH2CH3)3] ppm. 13C NMR (75 MHz, CDCl3): δ =
170.3 and 170.0 (CO), 130.6 (3Ј-CH), 126.0 (4Ј-CH), 80.8 (2-Cq),
63.2 (1Ј-CH2), 62.3 and 62.3 (2 C, 2 OCH2CH3), 49.7 (2Ј-CH), 18.2
(4Ј-CH3), 14.2 and 14.1 (2 C, 2 OCH2CH3), 6.8 [3 C, Si(CH2-
CH ) ], 4.3 [3 C, Si(CH CH ) ] ppm. FTIR (neat): ν = 3496 (br.
˜
3 3
2
3 3
w), 2955 (w), 2912 (w), 2877 (w), 1738 (s), 1461 (w), 1414 (w), 1368
(w), 1299 (m), 1248 (m), 1213 (s), 1150 (s), 1099 (s), 1007 (m), 968
(m), 923 (m), 863 (w), 818 (m), 794 (m), 725 (s), 668 (w), 448 (w)
cm–1. HRMS (ESI): calcd. for C18H34O6SiNa [M + Na]+ 397.2017;
found 397.2008. Specific rotations (c = 1.02, CHCl3, T = 22 °C):
[α]D = –27.7, [α]578 = –28.8, [α]546 = –32.9, [α]436 = –59.0, [α]365
=
–97.4.
Supporting Information (see footnote on the first page of this arti-
cle): Full experimental details and spectroscopic characterizations
of all new compounds.
Acknowledgments
Financial support by the Deutsche Forschungsgemeinschaft
(KO 1349/17-1) and the Stiftung der Deutschen Wirtschaft (fellow-
ship to M. W.) are gratefully acknowledged.
Scheme 8. Attachment of the C-8 side-chain and completion of the
synthesis.
[1] J.-H. Jang, K. Kanoh, K. Adachi, Y. Shizuri, J. Nat. Prod.
2006, 69, 1358–1360.
[2] R. Fu, J. Chen, L. C. Guo, J. L. Ye, Y. P. Ruan, P. Q. Huang,
Org. Lett. 2009, 11, 5242–5245.
[3] R. Fu, J. L. Ye, X.-J. Dai, Y. P. Ruan, P. Q. Huang, J. Org.
Chem. 2010, 75, 4230–4234.
[4] K. Hiroya, K. Kawamoto, K. Inamoto, T. Sakamoto, T. Doi,
Tetrahedron Lett. 2009, 50, 2115–2118.
used as the starting material (Scheme 8). After TMS depro-
tection, the target compound (+)-awajanomycin (1) was ob-
tained. The spectral properties and optical rotation of syn-
thetic (+)-awajanomycin (1) were identical to those reported
for the natural product.[1]
[5] D. R. Pritchard, J. D. Wilden, Tetrahedron Lett. 2010, 51,
1819–1821.
[6] a) M. Wohlfahrt, K. Harms, U. Koert, Angew. Chem. 2011,
123, 8554–8556; Angew. Chem. Int. Ed. 2011, 50, 8404–8406;
b) M. Wohlfahrt, K. Harms, U. Koert, Angew. Chem. 2011,
123, 10945; Angew. Chem. Int. Ed. 2011, 50, 10742.
[7] H. Lachance, D. G. Hall, Org. React. 2008, 73, 1–608.
Conclusions
An efficient, versatile, and enantioselective route to the
natural product (+)-awajanomycin (1) has been developed. [8] R. W. Hoffmann, K. Ditrich, G. Köster, R. Stürmer, Chem.
[22.5% over 10 steps (from 13) compared with 3.8% over
Ber. 1989, 122, 1783–1789.
[9] M. W. Andersen, B. Hildebrandt, G. Köster, R. W. Hoffmann,
13 steps in ref.[3]]. The key steps in this procedure are the
Chem. Ber. 1989, 122, 1777–1782.
asymmetric allylboration of a vic-tricarbonyl compound, a
[10] W. C. Hiscox, D. S. Matteson, J. Org. Chem. 1996, 61, 8315–
substrate-controlled alkene dihydroxylation with subse-
quent differentiation of the diastereotopic ester groups, and
a catalyst-controlled reduction of an enone. The crucial role
of the silyl protecting group on the tertiary alcohol in
achieving the introduction of three out of the five stereocen-
ters is noteworthy.
8316.
[11] a) Z. Li, X. Lu, S. Ma, J. Org. Chem. 1992, 57, 709–713; b) E.
Piers, T. Wong, P. D. Coish, C. Rogers, Can. J. Chem. 1994, 72,
1816–1819.
[12] K.-S. Masters, B. L. Flynn, J. Org. Chem. 2008, 73, 8081–8084.
[13] A. G. Myers, B. Zheng, M. Movassaghi, J. Org. Chem. 1997,
62, 7507.
2264
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 2260–2265