Notes and references
z The same reaction was carried out using the conventional
n-Bu3SnH–AIBN system as follows. A solution of n-Bu3SnH (10 mL,
3.3 ꢁ 10ꢀ5 mol) and AIBN (0.5 mg, 3.0 ꢁ 10ꢀ6 mol) in benzene (10 mL)
was added dropwise over 3 h to a refluxing solution of 1 (10 mg,
3.0 ꢁ 10ꢀ5 mol) in 10 mL of benzene. The products were analyzed and
quantified by GC-MS with diphenyl as the internal standard. Yields: 2,
50%; 3, 47%.
y Formation of Co(I) species of B12 on TiO2 was confirmed by
diffusion UV-vis spectroscopy with a reflectance maxima at 390 nm
(Fig. S2 in ESIw).
z As the oxidized product, acetoaldehyde diethyl acetal was detected
by GC-MS in C2H5OH. GC-MS (EI, m/z): [M]+, 118; [M ꢀ CH3]+
,
Scheme 1
113; [M ꢀ CH3CH2 + 1]+, 90. The decomposition of oxidized
product for triethanolamine proceeds via a well-known sequence to
diethanolamine and glycolaldehyde.15
This catalytic system was applied for ring-expansion
reactions of alicyclic ketones (5, 6 and 7-membered rings) with
a carboxylic ester and a bromomethyl group6,14 as shown in
eqn (3). The reactions largely proceeded for all the substrates
as shown in Table 4.
1 (a) Vitamin B12 and B12-Protein, ed. B. Kra
B. T. Golding, Wiley-VCH, Weinheim, 1998; (b) Chemistry and
Biochemistry of B12 ed. R. Banerjee, Wiley-Interscience,
¨
utler, D. Arigoni and
,
New York, 1999; (c) R. Banerjee and S. W. Ragsdale, Annu. Rev.
Biochem., 2003, 72, 209; (d) T. Toraya, Chem. Rev., 2003, 103, 2095;
(e) K. L. Brown, Chem. Rev., 2005, 105, 2075.
2 P. J. Toscano and L. G. Marzilli, Prog. Inorg. Chem., 1984, 31, 105.
3 (a) R. Scheffold, G. Rytz, L. Walder and R. Orlinski, Pure Appl.
Chem., 1983, 55, 1791; (b) V. F. Patel and G. Pattenden, Tetrahedron
Lett., 1987, 28, 1451; (c) T. Darbre, R. Keese and V. Siljegovic,
Chem. Commun., 1996, 1561; (d) D.-L. Zhou, C. K. Njue and
J. F. Rusling, J. Am. Chem. Soc., 1999, 121, 2909; (e) F. Sun and
T. Darbre, Org. Biomol. Chem., 2003, 1, 3154; (f) C. M. McGinley,
H. A. Relyea and W. A. Van Der Donk, Synlett, 2006, 211.
4 Y. Murakami, Y. Hisaeda, T. Ozaki, T. Tashiro, T. Ohno, Y. Tani
and Y. Matsuda, Bull. Chem. Soc. Jpn., 1987, 60, 311.
5 T. Ohno, T. Nishioka, Y. Hisaeda and Y. Murakami,
THEOCHEM, 1994, 308, 207.
ð3Þ
Table 4 Ring expansion reaction catalyzed by the B12–TiO2 systema
n
Time/h
Conversionb (%)
Products (yieldb (%))
1
2
3
10
12
13
B99
B99
B99
80
77
80
6 Y. Hisaeda, J. Takenaka and Y. Murakami, Electrochim. Acta,
1997, 42, 2165.
a
Condition: [substrate] = 3.0 ꢁ 10ꢀ3 M, catalyst (B12–TiO2) = 35 mg
7 H. Shimakoshi, A. Nakazato, T. Hayashi, Y. Tachi, Y. Naruta and
Y. Hisaeda, J. Electroanal. Chem., 2001, 507, 170.
8 (a) H. Shimakoshi, M. Tokunaga and Y. Hisaeda, Dalton Trans.,
2004, 878; (b) M. A. Jabbar, H. Shimakoshi and Y. Hisaeda,
Chem. Commun., 2007, 1653.
(B12, 1.21 ꢁ 10ꢀ5 M), solvent C2H5OH 30 mL under N2 at room
b
temperature, reaction time = 10–13 h. Conversions were estimated
by the recovery of the substrate. Yields were based on initial concen-
tration of the substrate.
9 (a) G. N. Schrauzer and E. Deutsch, J. Am. Chem. Soc., 1969, 91,
3341; (b) A. Fischli and J. J. Daly, Helv. Chim. Acta, 1980, 63, 1628.
10 H. Shimakoshi, E. Sakumori, K. Kaneko and Y. Hisaeda, Chem. Lett.,
2009, 38, 468. The content of cobyrinic acid (B12), 2.8 ꢁ 10ꢀ5 mol gꢀ1
.
In summary, the B12–TiO2 hybrid catalyst inspired from the
natural coenzyme B12 showed a high reactivity for molecular
transformation under mild conditions. The present system was
clean and economical in contrast to the conventional radical
reagent from the viewpoint of green chemistry. Therefore, the
present system would be readily applicable for the design of an
eco-friendly catalyst.
11 (a) M. A. Fox and M. T. Dulay, Chem. Rev., 1993, 93, 341;
(b) M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann,
Chem. Rev., 1995, 95, 69.
12 Refer to leading papers for alternative to tributyltin hydride.
(a) C. Chatgilialoglu, Acc. Chem. Res., 1992, 25, 188; (b) A. Studer
and S. Amrein, Angew. Chem., Int. Ed., 2000, 39, 3080;
(c) J. M. Barks, B. C. Gilbert, A. F. Parsons and B. Upeandran,
Tetrahedron Lett., 2001, 42, 3137; (d) S. Mikami, K. Fujita,
T. Nakamura, H. Yorimitsu, H. Shinokubo, S. Matsubara and
K. Oshima, Org. Lett., 2001, 3, 1853; (e) M. Sugi and H. Togo,
Tetrahedron, 2002, 58, 3171; (f) K. Inoue, A. Sawada, I. Shibata and
A. Baba, J. Am. Chem. Soc., 2002, 124, 906.
13 A. P. Esteves, D. M. Goken, L. J. Klein, L. F. M. Leite,
M. J. Medeiros and D. G. Peters, Eur. J. Org. Chem., 2005, 4852.
14 P. Dowd and S.-C. Choi, Tetrahedron, 1989, 45, 77.
15 M. Kirch, J.-M. Lehn and J.-P. Sauvage, Helv. Chim. Acta, 1979,
62, 1345.
This work was partially supported by a Grant-in-Aid for
Scientific Research on Priority Areas (452 and 460) and
Global COE Program ‘‘Science for Future Molecular
Systems’’ from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) of Japan and a Grant-
in-Aid for Scientific Research (A) (No. 21245016) from the
Japan Society for the Promotion of Science (JSPS).
ꢂc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6427–6429 | 6429