Imidazo[1,2-a]pyridine Derivatives
Journal of Combinatorial Chemistry, 2010 Vol. 12, No. 1 43
Scheme 2. Synthesis of 2-(Methylsulfanyl)imidazo[1,2-a]-
pyridine-3-yl Cyanide 6
Acknowledgment. We gratefully acknowledge the finan-
cial support from the Research Council of the University of
Tehran. We thank Dr. Karol Gajewski for helpful advice with
this work.
Note Added after ASAP Publication. This paper
published ASAP November 11, 2009 with an incorrect
version of the Supporting Information; the corrected version
published ASAP November 18, 2009 with revisions to data
strings, compounds, spectra, and additional references were
added.
Scheme 3. Possible Derivatizations of Imidazo[1,2-a]-
pyridine 4
Supporting Information Available. Experimental pro-
1
cedures, H NMR and 13C NMR spectra for compounds 4,
6, and 7. This material is available free of charge via the
References and Notes
of a subsequent functionalization of the imidazo[1,2-a]py-
ridine ring system (Scheme 3).
(1) (a) Schreiber, S. L. Science 2000, 287, 1964–1969. (b)
Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306–313.
(2) Hoesl, C. E.; Nefzi, A.; Houghten, R. A. J. Comb. Chem.
2003, 5, 155–160.
(3) (a) Teague, S. J.; Davis, A. M.; Leeson, P. D.; Oprea, T.
Angew. Chem., Int. Ed. 1999, 38, 3743–3748. (b) Armstrong,
R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating,
T. A. Acc. Chem. Res. 1996, 29, 123–131.
(4) (a) Orru, R. V. A.; De Greef, M. Synthesis 2003, 1471–1499.
(b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39,
3168–3210. (c) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt,
P. Chem.sEur. J. 2000, 6, 3321–3329.
(5) (a) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5,
435–438. (b) Cui, S. L.; Lin, X. F.; Wanj, Y. J. Org. Chem.
2005, 70, 2866–2869. (c) Huang, Y.; Yang, F.; Zhu, C. J. Am.
Chem. Soc. 2005, 127, 16386–16387. (d) Ye, P.; Sarjent, K.;
Stewart, E.; Lau, J. F.; Yohannes, D.; Yu, L. J. Org. Chem.
2006, 71, 3137–3140. (e) Domling, A. Chem. ReV. 2006, 106,
17–89.
Although the mechanism of this reaction has not been
established experimentally, a reasonable mechanism is shown
in the Supporting Information. It is worthy of mention that
in the 3-substitued pyridines only the ortho-position of the
substituents was attacked by the imine anion to form an
imidazole ring.27
Compounds 4, 6, and 7 are stable solids whose structures
1
were established by IR, H NMR, 13C NMR, and EI-MS
spectroscopy.
In conclusion, we have demonstrated an efficient and
simple method for the preparation of imidazo[1,2-a]pyridine
derivatives using readily available starting materials. Promi-
nent among the advantages of this new method are novelty,
operational simplicity, and good yields. Further reactivity
studies and synthetic applications of this methodology are
in progress in our laboratory.
Synthesis of 4{1,1,1}. Caution! SeVere toxicity will occur
with doses of less than 1 g of thiocyanates. When strongly
heated or on contact with acids or acid fumes, they emit
highly toxic fumes.
(6) Rival, Y.; Grassy, G.; Michel, G. Chem. Pharm. Bull. 1992,
40, 1170–1176.
(7) (a) Fisher, M. H.; Lusi, A. J. Med. Chem. 1972, 15, 982–
985. (b) Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Eur.
J. Med. Chem. 1991, 26, 13–18.
(8) (a) Hamdouchi, C.; de Blas, J.; del Prado, M.; Gruber, J.;
Heinz, B. A.; Vance, L. J. Med. Chem. 1999, 42, 50–59. (b)
Lhassani, M.; Chavignon, O.; Chezal, J.-M.; Teulade, J. C.;
Chapat, J.-P.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq,
E.; Gueiffier, A. Eur. J. Med. Chem. 1999, 34, 271–274.
(9) Kaminsky, J. J.; Doweyko, A. M. J. Med. Chem. 1997, 40,
427–436.
(10) Rupert, K. C.; Henry, J. R.; Dodd, J. H.; Wadsworth, S. A.;
Cavender, D. E.; Olini, G. C.; Fahmy, B.; Siekierka, J. J.
Bioorg. Med. Chem. Lett. 2003, 13, 347–350.
(11) Hamdouchi, C.; Zhong, B.; Mendoza, J.; Collins, E.; Jaramillo,
C.; De Diego, J. E.; Robertson, D.; Spencer, C. D.; Anderson,
B. D.; Watkins, S. A.; Zhanga, F.; Brooks, H. B. Bioorg. Med.
Chem. Lett. 2005, 15, 1943–1947.
(12) Sanfilippo, P. J.; Urbanski, M.; Press, J. B.; Dubinsky, B.;
Moore, J. B., Jr. J. Med. Chem. 1991, 34, 2060–2067.
(13) Goodacre, S. C.; Street, L. J.; Hallett, D. J.; Crawforth, J. M.;
Kelly, S.; Owens, A. P.; Blackaby, W. P.; Lewis, R. T.;
Stanley, J.; Smith, A. J.; Ferris, P.; Sohal, B.; Cook, S. M.;
Pike, A.; Brown, N.; Wafford, K. A.; Marshall, G.; Castro,
J. L.; Atack, J. R. J. Med. Chem. 2006, 49, 35–38.
(14) (a) Trapani, G.; Franco, M.; Ricciardi, L.; Latrofa, A.; Genchi,
G.; Sanna, E.; Tuveri, F.; Cagetti, E.; Biggio, G.; Liso, G.
J. Med. Chem. 1997, 40, 3109–3118. (b) Trapani, G.; Franco,
M.; Latrofa, A.; Ricciardi, L.; Carotti, A.; Serra, M.; Sanna,
E.; Biggio, G.; Liso, G. J. Med. Chem. 1999, 42, 3934–3941.
Pyridine (0.097 mL, 1.2 mmol) and phenacyl bromide
(0.239 g, 1.2 mmol) were taken up in toluene (10 mL), and
the mixture was stirred at room temperature (rt) for 1 h. To
this mixture methyl thiocyanate (0.074 g, 1.0 mmol) and
potassium carbonate (0.28 g, 2.0 mmol) were added, and
the mixture was allowed to stir at reflux for 12 h. Upon
completion, the toluene was removed under reduced pressure,
then water was added, and the reaction mixture was extracted
with dichloromethane (3 × 15 mL). The organic layer was
dried over Na2SO4. Evaporation of the solvent followed by
purification on silica gel (ethyl acetate-hexane, 1-9)
afforded the pure 4{1,1,1} as yellow solid (0.24 g, yield
78%). M.p 140 °C. IR (KBr) (νmax/cm-1): 1490, 1571, 1597,
1
3060. H NMR (500 MHz, CDCl3) δH (ppm): 2.58 (3H, s,
S-CH3), 7.07-7.10 (1H, m), 7.52-7.57 (3H, m), 7.61-7.63
3
(1H, m), 7.68-7.72 (3H, m), 9.60 (1H, d, JHH ) 6.9 Hz).
13C NMR (125 MHz, CDCl3) δC (ppm): 15.32, 114.70,
116.24, 128.60, 128.63, 129.05, 129.07, 130.02, 132.05,
140.33, 148.55, 156.49, 186.05 (CdO). MS, m/z (%): 268
(M+,100), 235 (67), 207 (33), 163 (26), 77 (44), 51 (23).