NATuRe CHeMisTRy
Articles
7. Müller, M.-A. & Pfaltz, A. Asymmetric hydrogenation of α,β-unsaturated
nitriles with base-activated iridium N,P ligand complexes. Angew. Chem. Int.
Ed. 53, 8668–8671 (2014).
34. Chakraborty, S., Das, U. K., Ben-David, Y. & Milstein, D. Manganese
catalyzed α-olefnation of nitriles by primary alcohols. J. Am. Chem. Soc. 139,
11710–11713 (2017).
8. Lee, J.-E. & Yun, J. Catalytic asymmetric boration of acyclic α,β-unsaturated
esters and nitriles. Angew. Chem. Int. Ed. 47, 145–147 (2008).
9. Deutsch, H. M. et al. Synthesis and pharmacology of site-specifc cocaine
abuse treatment agents: 2-(aminomethyl)-3-phenylbicyclo[2.2.2]- and -[2.2.1]
alkane dopamine uptake inhibitors. J. Med. Chem. 42, 882–895 (1999).
10. Janssen, P. A. et al. In search of a novel anti-HIV drug: multidisciplinary
coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethyenyl]-2,6-
dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (R278474,
Rilpivirine). J. Med. Chem. 48, 1901–1909 (2005).
35. Yamamoto, Y., Asatani, T. & Kirai, N. Copper-catalyzed stereoselective
hydroarylation of 3-aryl-2-propynenitrile with arylboronic acids.
Adv. Synth. Catal. 351, 1243–1249 (2009).
36. Barrado, A. G., Zielinski, A., Goddard, R. & Alcarazo, M. Regio- and
stereoselective chlorocyanation of alkynes. Angew. Chem. Int. Ed. 56,
13401–13405 (2017).
37. Wang, X. & Studer, A. Metal-free direct C–H cyanation of alkenes.
Angew. Chem. Int. Ed. 57, 11792–11796 (2018).
38. Han, Y.-P. et al. Lewis acid mediated tandem reaction of propargylic alcohols
with hydroxylamine hydrochloride to give α,β-unsaturated amides and
alkenyl nitrile. J. Org. Chem. 80, 9200–9207 (2015).
11. Castellino, S. et al. Central nervous system disposition and metabolism of
fosdevirine (GSK2248761), a non-nucleoside reverse transcriptase inhibitor:
an LC-MS and matrix-assisted laser desorption/ionization imaging MS
investigation into central nervous system toxicity. Chem. Res. Toxicol. 26,
241–251 (2013).
12. Zhang, L.-H. et al. Te synthetic compound CC-5079 is a potent inhibitor of
tubulin polymerization and tumor necrosis factor-a production with
antitumor activity. Cancer Res. 66, 951–959 (2006).
13. Ruchelman, A. L. et al. 1,1-Diarylalkenes as anticancer agents: dual inhibitors
of tubulin polymerization and phosphodiesterase 4. Bioorg. Med. Chem. 19,
6356–6374 (2011).
39. Su, W., Gong, T.-J., Xiao, B. & Fu, Y. Rhodium(iii)-catalyzed cyanation of
vinylic C–H bonds: N-cyano-N-phenyl-p-toluensulfonamide as a cyanation
reagent. Chem. Commun. 51, 11848–11851 (2015).
40. Suginome, M., Yamamoto, A. & Murakami, M. Palladium-catalyzed addition
of cyanoboranes to alkynes: regio- and stereoselective synthesis of α,β-
unsaturated β-boryl nitriles. Angew. Chem. Int. Ed. 44, 2380–2382 (2005).
41. Crowe, W. E. & Goldberg, D. R. Acrylonitrile cross-metathesis: coaxing olefn
metathesis reactivity from a reluctant substrate. J. Am. Chem. Soc. 117,
5162–5163 (1995).
14. Searle, P. A., Molinski, T. F., Brzezinski, L. J. & Leahy, J. W. Absolute
confguration of phorboxazoles A and B from the marine sponge
Phorbas sp. 1. Macrolide and hemiketal rings. J. Am. Chem. Soc. 118,
9422–9423 (1996).
42. Randl, S., Gessler, S., Wakamatsu, H. & Blechert, S. Highly selective
cross-metathesis with acrylonitrile using a phosphine free Ru-complex.
Synlett 2001, 430–432 (2001).
43. Miao, X., Dixneuf, P. H., Fischmeister, C. & Bruneau, C. A green route to
nitrogen-containing groups: the acrylonitrile cross-metathesis and
applications to plant oil derivatives. Green Chem. 13, 2258–2271 (2011).
44. Gawin, R. et al. Cyclic alkyl amino ruthenium complexes—efcient catalysts
for macrocyclization and acrylonitrile cross metathesis. ACS Catal. 7,
5443–5449 (2017).
45. Michrowska, A. et al. Nitro-substituted Hoveyda–Grubbs ruthenium
carbenes: enhancement of catalyst activity through electronic activation. J.
Am. Chem. Soc. 126, 9318–9325 (2004).
46. Bieniek, M. et al. Advanced fne-tuning of Grubbs/Hoveyda olefn metathesis
catalysts: a further step toward an optimum balance between antinomic
principles. J. Am. Chem. Soc. 128, 13652–13653 (2006).
47. Bai, C.-X., Lu, X.-B., He, R., Zhang, W.-Z. & Feng, X.-J. Lewis-acid assisted
cross-metathesis of acrylonitrile with functionalized olefns catalysed by
phosphine-free ruthenium carbene complex. Org. Biomol. Chem. 3,
4139–4142 (2005).
48. Wiberg, K. B., Wang, Y., Petersson, G. A. & Bailey, W. F. Intramolecular
nonbonded attractive interactions: 1-substituted propenes. J. Chem. Teory
Comput. 5, 1033–1037 (2009).
15. Dalisay, D. S. & Molinski, T. F. Structure elucidation at the nanomole scale. 2.
Hemi-phorboxazole A from Phorbas sp. Org. Lett. 11, 1967–1970 (2009).
16. Doyle, M. P. et al. Lewis acid promoted reactions of diazocarbonyl
compounds. 3. Synthesis of oxazoles from nitriles through intermediate
β-imidatoalkenediazonium salts. J. Org. Chem. 45, 3657–3664 (1980).
17. Vedejs, E., Piotrowski, D. W. & Tucci, F. C. Oxazolium-derived azomethine
ylides. External oxazole activation and internal dipole trapping in the
synthesis of aziridinomitosene. J. Org. Chem. 65, 5498–5505 (2000).
18. Suganuma, M. et al. Calyculin A, an inhibitor of protein phosphatases,
a potent tumor promoter on CD-1 mouse skin. Cancer Res. 50,
3521–3525 (1990).
19. Jang, H., Romiti, F., Torker, S. & Hoveyda, A. H. Catalytic diastereo- and
enantioselective addition of versatile allyl groups to N–H ketimines.
Nat. Chem. 9, 1269–1275 (2017).
20. Zhang, Z. & Liebeskind, L. S. Palladium-catalyzed, copper(i)-mediated
coupling of boronic acids and benzylthiocyanate. A cyanide-free cyanation of
boronic acids. Org. Lett. 8, 4331–4333 (2006).
21. Powell, K. J., Han, L.-C., Sharma, P. & Moses, J. E. Chemoselective
palladium-catalyzed cyanation of alkenyl halides. Org. Lett. 16,
2158–2161 (2014).
49. Torker, S., Koh, M. J., Khan, K. M. & Hoveyda, A. H. Regarding a persisting
puzzle in olefn metathesis with Ru complexes: why are transformations
of alkenes with a small substituent Z-selective? Organometallics 35,
543–562 (2016).
22. Nakao, Y., Yada, A., Ebata, S. & Hiyama, T. A dramatic efect of Lewis-acid
catalysts on nickel-catalyzed carbocyanation of alkynes. J. Am. Chem. Soc.
129, 2428–2429 (2007).
50. Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct
synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature 531,
459–465 (2016).
23. Zhang, X., Xie, X. & Liu, Y. Nickel-catalyzed highly regioselective
hydrocyanation of terminal alkynes with Zn(CN)2 using water as the
hydrogen source. J. Am. Chem. Soc. 140, 7385–7389 (2018).
24. Qin, C. & Jiao, N. Iron-facilitated direct oxidative C–H transformation
of allylarenes or alkenes to alkenyl nitriles. J. Am. Chem. Soc. 132,
15893–15895 (2010).
51. Nguyen, T. T. et al. Kinetically controlled E-selective catalytic olefn
metathesis. Science 352, 569–575 (2016).
52. Hoveyda, A. H., Khan, R. K. M., Torker, S. & Malcolmson, S. J. In Handbook
of Metathesis (eds Grubbs, R. H., Wenzel, A. G., O’Leary, D. J. & Khosravi, E.)
503–562 (Wiley-VCH, Weinheim, 2014).
25. Murai, M., Hatano, R., Kitabata, S. & Ohe, K. Gallium (iii)-catalysed
bromocyanation of alkynes: regio- and stereoselective synthesis of β-bromo-
α,β-unsaturated nitriles. Chem. Commun. 47, 2375–2377 (2011).
26. Wang, Z. & Chang, S. Copper-mediated transformation of organosilanes to
nitriles with DMF and ammonium iodide. Org. Lett. 15, 1990–1993 (2013).
27. Pradal, A. & Evano, G. A vinylic Rosenmund–von Braun reaction: practical
synthesis of acrylonitriles. Chem. Commun. 50, 11907–11910 (2014).
28. Gao, D.-W. et al. Direct access to versatile electrophiles via catalytic oxidative
cyanation of alkenes. J. Am. Chem. Soc. 140, 8069–8073 (2018).
29. Ye, F., Chen, J. & Ritter, T. Rh-catalyzed anti-Markovnikov hydrocyanation of
terminal alkynes. J. Am. Chem. Soc. 139, 7184–7187 (2017).
30. Zhang, T. Y., O’Toole, J. C. & Dunigan, J. M. An efcient and practical
synthesis of diphenyl cyanomethylenephosphonate: applications to the
stereoselective synthesis of cis-α,β-unsaturated nitriles. Tetrahedron Lett. 39,
1461–1464 (1998).
53. Xu, C., Shen, X. & Hoveyda, A. H. In situ methylene capping: a general
strategy for efcient stereoretentive catalytic olefn metathesis. Te concept,
methodological implications, and applications to synthesis of biologically
active compounds. J. Am. Chem. Soc. 139, 10919–10928 (2017).
54. Ahmed, T. S. & Grubbs, R. H. Fast-initiating, ruthenium-based catalysts for
improved activity in highly E-selective cross metathesis. J. Am. Chem. Soc.
139, 1532–1537 (2017).
55. Ficken, G. E., Linstead, R. P., Stephen, E. & Whalley, M. Conjugated
macrocycles. Part XXXI. Catalytic hydrogenation of tetraazaporphins, with a
note on its stereochemical course. J. Chem. Soc. 3879–3886 (1958).
56. Lam, J. K. et al. Synthesis and evaluation of molybdenum and tungsten
monoaryloxide halide alkylidene complexes for Z-selective cross-metathesis
of cyclooctene and Z-1,2-dichloroethylene. J. Am. Chem. Soc. 138,
15774–15783 (2016).
31. Fang, F., Li, Y. & Tian, S. K. Stereoselective olefnation of N-sulfonyl imines
with stabilized phosphonium ylides for the synthesis of electron-defcient
alkenes. Eur. J. Org. Chem. 2011, 1084–1091 (2011).
57. Nguyen, T. T., Koh, M. J., Mann, T. J., Schrock, R. R. & Hoveyda, A. H.
Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis.
Nature 552, 347–354 (2017).
32. Palomo, C. et al. A new version of the Peterson olefnation using
bis(trimethylsilyl)methyl derivatives and fuoride ion as catalyst. J. Org. Chem.
55, 2498–2503 (1990).
58. Haribal, M., Yang, Z., Attygale, A. B., Renwick, J. A. A. & Meinwald, J. A
cyanoallyl glucoside from Alliaria petiolata, as a feeding deterrent larvae of
Pieris napi oleracea. J. Nat. Prod. 64, 440–443 (2001).
33. Kojima, S., Fukuzaki, T., Yamakawa, A. & Murai, Y. Highly (Z)-selective
synthesis of β-monosubstituted α,β-unsaturated cyanides using the Peterson
reaction. Org. Lett. 6, 3917–3920 (2004).
59. Olsen, C. E., Møller, B. L. & Motawia, M. S. Synthesis of the allelochemical
alliarinoside present in garlic mustard (Alliaria petiolata), an invasive plant
species in north America. Carbohydr. Res. 394, 13–16 (2014).